Low-temperature series expansions for the spin-1 Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 276987
(http://iopscience.iop.org/0305-4470/27/21/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:11

Please note that terms and conditions apply.

Low-temperature series expansions for the spin-1 Ising model

I G Enting \dagger §, A J Gutmann $\ddagger \|$ and I Jensen \ddagger ©
\dagger CSIRO, Division of Atmospheric Research, Private Bag 1, Mordialloc, Victoria, Australia 3195
\ddagger Department of Mathematics, The University of Melbourne, Parkville, Victoria, Australia 3052

Received 14 May 1994

Abstract

The finite-lattice method of series expansion has been used to extend lowtemperature series for the partition function, order parameter and susceptibility of the spin- 1 Ising model on the square lattice. A new formalism is described which uses two distinct transfer-matrix approaches in order to significantly reduce computer memory requirements and which permits the derivation of the series to 79th order. Subsequent analysis of the series clearly confirms that the spin-1 model has the same dominant critical exponents as the spin- $\frac{1}{2}$ lsing model. Accurate estimates for both the critical temperature and non-physical singularities are obtained. In addition, evidence for a non-analytic confluent correction with exponent $\Delta_{1}=1.1 \pm 0.1$ is found.

1. Introduction

Low-temperature expansions for the spin-1 Ising model were first obtained by Fox and Guttmann (1973), who gave a 26 -term series for the square lattice, of which only the first 24 terms were correct. The method used to obtain the series was a generalization of the code method of Sykes et al (1965). Series on other lattices, both two- and threedimensional, were also obtained. Subsequently the finite-lattice method of series expansions (de Neef 1975, de Neef and Enting 1977) has proved to be an extremely powerful technique for deriving series expansions for a range of two-dimensional models. The formalism is applicable in higher dimensions but the technique becomes progressively less efficient (Guttmann and Enting 1993). Adler and Enting (1984) used the finite-lattice method to extend low-temperature expansions for the zero-field partition function, the magnetization and the zero-field susceptibility of the spin-1 Ising model to order u^{45}. As we have noted elsewhere, developments in computing over the last decade, notably faster computers with more memory, have allowed larger finite-lattice calculations to be made. By re-running the program used by Adler and Enting we easily extended the series to 65 terms. We have, however, recently implemented a revised algorithm that removes much of the memory-size requirement that has previously limited our finite-lattice calculations. This involves using two different ways of calculating finite-lattice partition functions. A preliminary analysis of the formalism was given by Enting (1990). In this paper we use this new formalism

[^0]to calculate low-temperature spin-1 Ising series to order u^{78}. Using a rather cumbersome correction method described in the appendix we also obtained the coefficients of u^{79}. We have also substantially extended the spin- $\frac{1}{2}$ low-temperature susceptibility series.

The layout of the paper is as follows. In section 2 we describe the finite-lattice method of series expansions. The various expansions are detailed in section 3. The results of the series analysis, with the emphasis on the new extended spin- 1 series, are presented in section 4. Finally, section 5 contains a short summary and discussion of our results.

2. Series expansions from the finite-lattice method

As in the study by Adler and Enting (1984), the series expansions are derived from

$$
\begin{equation*}
Z \approx \prod_{m, n} Z_{m n}^{a_{m n}} \quad \text { with } \quad m \leqslant n \quad \text { and } \quad m+n \leqslant k \tag{2.1}
\end{equation*}
$$

where Z is the infinite-lattice partition function and the $Z_{m n}$ are the partition functions of the $m \times n$ lattices. The weights, $a_{m n}$ are derived from the expressions given by Enting (1978), modified to exploit the rotational symmetry of the lattice. The difference from Enting and Adler is that we use a larger cut-off, k, which leads to longer series.

The finite-lattice method relies on efficient techniques for evaluating the $Z_{m n}$. We use what are known as 'transfer-matrix' techniques. These work by moving a boundary through the lattice and constructing a partial sum of Boltzmann weights for each possible configuration of the boundary. The traditional form of transfer-matrix calculation involves moving the boundary one column at a time. For a system with q states per site, evaluating $Z_{m n}$ involves n iterations of $q^{2 m}$ operations on series. It is more efficient to move the boundary by adding one site at a time. Evaluating $Z_{m n}$ involves $m \times n$ iterations of q^{m+1} series operations. The 'one-site-at-a-time' algorithm seems to have been rediscovered independently a number of times. Our use of the technique derives from unpublished work by Baxter.

The new procedure proposed by Enting (1990) and adopted here is to use (2.1) as before but to use two different techniques for calculating the $Z_{m n}$. We define a cut-off parameter $b_{\max }$ so that, for a q-state system, the maximum vector size is $q^{b_{\max }}$. In evaluating $Z_{m n}$ (and considering only $m \leqslant n$ because of our use of symmetry), if $m \leqslant b_{\text {max }}$ we use our original procedure of building up the lattice column by column with each column built up one site at a time. Evaluating $Z_{m n}$ requires $m n q^{m+1}$ series operations but the evaluation of $Z_{m n}$ enables us to determine $Z_{m p}$ for $p<n$ with little extra computation. For square (or nearly square) lattices we evaluate the partition functions by a technique in which the boundary pivots about a central point. The general principle is based on unpublished work by Baxter.

The 'pivoting' transfer-matrix approach uses three integers, a, b and c (with $c=b$ or $c=b-1)$ to specify the rectangles. The rectangles are of size $m=(a+b)$ by $n=(b+c+1)$. We refer to sites by integer coordinates (x, y) with $1-a \leqslant x \leqslant b$ and $-c \leqslant y \leqslant b$. The partition function is a sum over the q^{a} conditional lattice sums in which the a sites $(x, 0)$ with $x \leqslant 0$ are fixed. Transfer-matrix techniques are used to calculate the lattice sum conditional on the state of the fixed sites.

The algorithm outlined below requires space for $2 q^{b}$ series and takes time $\propto m \times n \times$ $q^{(a+b)}$.

We consider two alternative forms of 'cut-off'.
Space-limited. If the execution time was not limiting, then the smallest rectangle that could not be computed by pivoting would be a square of size $(2 b+2) \times(2 b+2)$. Thus we use

$$
\begin{equation*}
m+n \leqslant k=4 b_{\max }+2 \tag{2.2}
\end{equation*}
$$

Figure 1. The various regions of the lattice numbered according to the order in which they are traversed in the pivoting algorithm. The a spins on the full circles are fixed. In the case of this 12×16 lattice we have $a=4, b=8$ and $c=7$.

We use the original transfer-matrix technique for $m \leqslant b_{\text {max }}$ and use the pivoting algorithm for rectangles of size $m=(b+c+1)$ by $n=(a+b)$ for $b, c \leqslant b_{\max }$. For $m=b_{\max }+1$ the longest rectangle is of length $n=a+b=3 b_{\max }+1$, so that in terms of the cut-off, k, the time requirement grows as $q^{3 k / 4}$.

Time-limited. If we wish to restrict the growth in the time requirement to the $q^{k / 2}$ that applies to our original technique, then we use the cut-off

$$
\begin{equation*}
m+n \leqslant k=3 b_{\max }+2 \tag{2.3}
\end{equation*}
$$

Again we use our original technique for $m \leqslant b_{\max }$ and use the pivoting algorithm for rectangles of size $m=(a+b)$ by $n=(2 b+1)$ for $a+b$ from $b_{\max }+1$ to $\lfloor k / 2\rfloor$.

In the work presented here we have used the 'time-limited' form. The algorithm for evaluating finite lattices by 'pivoting' is:

- For each of the q^{a} states of the fixed line (the full circles in figure 1):
- Construct the conditional lattice sum.
- Multiply the conditional sum by the internal weight of the fixed line.
- Add the product to the running total for the finite-lattice partition function.

The procedure for building up the conditional sum is:

* For each x from $1-a$ to 0 , build up the lattice sum for the column (x, y) for y from 1 to b (region I of figure 1).
* For each x from 1 to b, build up the lattice sum for the partial column (x, y) for y from b to x (region II of figure 1).
* For each y from $b-1$ to 1 , build up the lattice sum for the partial row (x, y) for x from b to y (region M of figure 1).
* Build up the lattice sum for the row $(x, 0)$ for x from b to 1 (IV).
* For each y from -1 to $1-b=-c$, build up the lattice sum for the partial row (x, y) for x from b to $-y$ (region V in figure 1).
* If $b=c$, build up the lattice sum for the diagonal $(x,-x)$ for x from b to 1 (not present in figure 1).
* For each x from $b-1$ to 1 , build up the lattice sum for the partial row (x, y) for y from $-b$ to $-x$ (region VII of figure 1).
* For each x from 0 to $1-b$, build up the lattice sum for the partial column (x, y) for y from $-b$ to -1 (region VIII of figure 1).

Another new feature of our calculations is the choice of a machine (Cray YMP-EL) which emphasizes processing speed rather than large memory. The fact that most of our basic operations in the transfer-matrix approach are actually operations on truncated series means that we can readily utilize the vector capabilities of such a machine by ensuring that the series operations are performed in vector mode. We note that the pivoting algorithm also permits a high degree of parallel operation since each of the sums for a given centre line can be evaluated independently of the others.

In order to deal with the large integer coefficients in the series the calculations were performed using modular arithmetic (see, for example, Knuth 1969). Utilizing the standard 46 -bit integers of the Cray we used the set of primes, $p_{i}=2^{23}-x_{i}$ with $x_{i} \in\{15,21,27,37,61, \ldots\}$. We had to use four primes for the spin- 1 calculations and five primes for the spin- $\frac{1}{2}$ calculations. Each run with $b_{\max }=8\left(b_{\max }=12\right)$ for the spin-1 (spin- $-\frac{1}{2}$) model required approximately 63 (48) CPU hours.

3. Expansions

For the spin-l Ising model in a homogeneous magnetic field h we write the Hamiltonian as

$$
\begin{equation*}
\mathcal{H}=\sum_{\langle i j)} J\left(1-S_{i} S_{j}\right)+\sum_{i} h\left(1-S_{i}\right) \tag{3.1}
\end{equation*}
$$

where the spin variables $S_{i}=0, \pm 1$. The first sum is over all nearest-neighbour pairs on the square lattice and the second sum is over all sites. The constants are chosen so that the $S_{i}=1$ ground state has zero energy. The low-temperature expansion, as described by Sykes and Gaunt (1973), is based on perturbations from the $S_{i}=1$ ground state. The expansions are obtained in terms of the low-temperature variable $u=\exp (-\beta J)$ and the field variable $\mu=\exp (-\beta h)$, where $\beta=1 / k T$. The expansion of the partition function in powers of u may be expressed as

$$
\begin{equation*}
Z=\sum_{k=0}^{\infty} u^{k} \Psi_{k}(\mu)=1+u^{4} \mu+u^{7} \mu^{2}+\cdots \tag{3.2}
\end{equation*}
$$

where $\Psi_{k}(\mu)$ are polynomials in μ. We express the field variable as $\mu=1-x$ and truncate the field dependence at x^{2} and thus find

$$
\begin{equation*}
Z=Z_{0}(u)+x Z_{1}(u)+x^{2} Z_{2}(u)+\cdots . \tag{3.3}
\end{equation*}
$$

According to standard definitions the order parameter, or the spontaneous magnetization, is the derivative of the free energy, $F=-k T \ln Z$, with respect to h,

$$
\begin{equation*}
M(u)=M(0)+\left.\frac{1}{\beta} \frac{\partial \ln Z}{\partial h}\right|_{h=0}=1+Z_{1}(u) / Z_{0}(u) \tag{3.4}
\end{equation*}
$$

since $x=0$ in zero field. For the susceptibility we find

$$
\begin{equation*}
\chi(u)=\left.\frac{\partial M(h)}{\partial h}\right|_{h=0}=\left.\frac{\partial}{\partial h}\left(Z^{-1} \frac{\partial Z}{\partial h}\right)\right|_{h=0}=\beta\left[2 \frac{Z_{2}(u)}{Z_{0}(u)}-\frac{Z_{1}(u)}{Z_{0}(u)}-\left(\frac{Z_{1}(u)}{Z_{0}(u)}\right)^{2}\right] . \tag{3.5}
\end{equation*}
$$

The specific-heat series is derived from the zero-field partition function (via the internal energy $\left.U=-(\partial / \partial \beta) \ln Z_{0}\right)$,

$$
\begin{equation*}
C_{v}(u)=\frac{\partial U}{\partial T}=\beta^{2} \frac{\partial^{2}}{\partial \beta^{2}} \ln Z_{0}=(\beta J)^{2}\left(u \frac{\mathrm{~d}}{\mathrm{~d} u}\right)^{2} \ln Z_{0}(u) \tag{3.6}
\end{equation*}
$$

The resulting series for $M(u), \beta^{-1} \chi(u)$, and $(\beta J)^{-2} C_{v}(u)$ are given in table 1. The number of terms derived correctly with the finite-lattice method is given by the power of the lowest-order connected graph not contained in any of the rectangles considered. Since we are using the time-limited cut-off the simplest such graphs are chains of $3 b_{\text {max }}+2=r$ sites all in the ' 0 ' state. From the spin-1 Hamiltonian we see that such chains give rise to terms $u^{3 r+1}$. The series are thus correct to order $u^{3 r}=u^{9 b_{\text {max }}+6}$. We have checked this explicitly by calculating the series for $b_{\max }=2,3 \ldots, 7$ and checking that the terms through $u^{9 b_{\max }+6}$ agree with the final 79 -term series derived using $b_{\max }=8$. An additional spin-1 coefficient was calculated by a correction procedure explained in the appendix. These new series are significant extensions to the hitherto longest series (45 terms) due to Adler and Enting (1984).

By the same methods mutatis mutandis, we calculated, with $b_{\max }=12$, a new 78 -term series for the spin- $-\frac{1}{2}$ Ising model in the low-temperature expansion variable $u=\exp (-2 \beta J)$. Note that the lowest-order graphs not counted are chains of spins flipped with respect to the ground state. But now only broken bonds pick up a factor of u. With chains of length r there are $2 r+2$ broken bonds so the series are correct to order $u^{2 r+1}=u^{6 b_{\max }+5}$. The

Table 1. New low-temperature series for the spin-1 2D Ising magnetization ($M(u)=\sum_{n} m_{n} u^{n}$), susceptibility $\left(\chi(u)=\sum_{n} x_{n} u^{n}\right)$, and specific heat $\left(C_{v}(u)=\sum_{n} c_{n} u^{n}\right)$.

n	m_{n}	x_{n}	c_{n}
0	1	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	-1	1	16
5	0	0	0
6	0	0	0
7	-4	8	98
8	3	-6	-96
9	0	0	0
10	-30	90	1000
11	-52	-144	-1936
12	-120	192	2064
13	368	480	5070
14	-612	-1372	-19012
15	-254	2676	31950
16	2524	1703	9024
17	-6216	-11952	-152014
18	4040	33316	383616
19	11805	-18900	-298186
20	-49400	-64201	-832320
21	68268	304580	3575922
22	14928	-401068	-5486624
23	-332511	-97928	-1012506
24	734508	2390637	27088992
25	-568038	-5130048	-65115000
26	-1641320	4264858	53200524
27	6202774	13518716	147217176
28	-923976	-49117798	-608004040
29	-2503162	76725752	947874280
30	29308994	189048900	
-			0

Table 1. Continued.

31	42749908	-381566684	-4568526730
32	-99021392	915306452	11071969920
33	72255812	-629297848	-8871938526
34	215763902	-2149429218	-24714851124
35	-846523304	8606730256	102572776040
36	1235587854	-12408220218	-158562077760
37	315695688	-3956969996	-31309254516
38	-5897043012	65853427044	766255508396
39	13498636700	-149789004280	-1846277129736
40	-10063784956	110599540765	1479447715520
41	-30197995484	371951421160	4133610817968
42	117108185474	-1416033283010	-17054958273276
43	-172710840680	2102892657652	26339112604404
44	-46214867144	737547145862	5331885548880
45	824863285280	-10822599389744	-127080932186700
46	-1901022089768	25078129380684	305778947448156
47	1405042568748	-17797597472844	-243733007205368
48	4266178550909	-61005293343300	-684581856372288
49	-16624047456088	235876708211784	2818178220557042
50	24458757867992	-344426000745528	-4339993392475000
51	6610934151948	-118602900569968	-894117116934894
52	-117973371104457	1797119592535141	20963370411907352
53	271535984970264	-4116526192115268	-50319881932177670
54	-200950868428636	2947822355097388	39972295747477872
55	-615007072669600	10130142463339880	112867555200892470
56	2391435417419895	-38724154430758393	-463179370952109840
57	-3523264660998628	56732375209602912	711889569606231690
58	-974049037638220	20114020125177948	149739050620646304
59	17078683955539360	-294868317310376404	-3442135262856162448
60	-39345145748450867	676479764508534719	8247102824525820120
61	29026701896553572	-479158286800083944	-6525890234473448550
62	89603802847507184	-1661764311006201920	-18532244655048816588
63	-348363066804818696	... 6354863121022079308	75848843620008360720
64	512907395631821606	-9265243259835533768	-116335729831253805824
65	144248115519171836	-3315474781302882096	-24961184352327362750
66	-2500429353847945250	48350450407929798098	563358836743426377588
67	5757911256695782416	-110521765873057849552	-1347235562794556332032
68	-4239564000431858236	78112180092393615814	1062223855357818122632
69	-13189936451780437660	272577693656067525988	3034102236742714342464
70	51212742729615384348	-1038017985499645393024	-12384673817861566133360
71	-75378650279043338628	1511592752767037119280	18959244151288425233210
72	-21589841096310396846	550095300981147667462	4149995353996807267776
73	369164127694023873860	-7896113973546269891772	-91961341446801674710358
74	-849854483657640971250	18026239753543948651338	219535041878849931107584
75	624038440770346152380	-12669452007330249289520	-172468622446186756857750
76	1956508551522393160164	-44535529209867702398308	-495562798199277085255224
77	-7587615135291641485816	169246143976718418368880	2017606788248236265104332
78	11159761201704504160824	-245838982882938309009072	-3082929124790021245909560
79	3251363324100951241776	-90655771470008657225676	-688181679835018200461774

resulting series are listed in table 2. The spin- $\frac{1}{2}$ magnetization and specific-heat series are, of course, known exactly, so only the susceptibility series is new. We nevertheless list the coefficients of all three quantities, partly for completeness and partly for verification of our algorithm.

Table 2. New low-temperature series for the spin- $\frac{1}{2} 2 D$ Ising magnetization ($M(u)=\sum_{n} m_{n} u^{n}$), susceptibility ($X(u)=\sum_{n} x_{n} u^{n}$), and specific heat ($C_{v}(u)=\sum_{n} c_{n} u^{n}$). All terms with odd n are zero.

n	m_{n}	x_{n}	c_{n}
0	1	0	0
2	0	0	0
4	-2	1	16
6	-8	8	72
8	-34	60	288
10	-152	416	1200
12	-714	2791	5376
14	-3472	18296	25480
16	-17318	118016	125504
18	-88048	752008	634608
20	-454378	4746341	3269680
22	-2373048	29727472	17086168
24	-12515634	185016612	90282240
26	-66551016	1145415208	481347152
28	-356345666	7059265827	2585485504
30	-1919453984	43338407712	13974825960
32	-10392792766	265168691392	75941188736
34	-56527200992	1617656173824	414593263952
36	-308691183938	9842665771649	2272626444528
38	-1691769619240	59748291677832	12502223573304
40	-9301374102034	361933688520940	68996534259040
42	-51286672777080	2188328005246304	381858968527680
44	-283527726282794	13208464812265559	2118806030647328
46	-1571151822119216	79600379336505560	11783826597027256
48	-8725364469143718	479025509574159232	65674579024955904
50	-48552769461088336	2878946431929191656	366728645195006000
52	-270670485377401738	17281629934637476365	2051443799934043632
54	-1511484024051198680	103621922312364296112	11494250259278105304
56	-845372260102884930	620682823263814178484	64499139095733378176
58	-47350642314439048648	3714244852389988540072	362436080938852037648
60	-265579129813183372802	22206617664989885664363	2039249170926323834880
62	-1491465339550559632448	132657236460768679560864	11487673072269872540904
64	-8385872784303807639294	791843294876287279547520	64786142191741932873984
66	-47202746620874986470336	4723112509660327575046688	365754067103461706996304
68	-265975151780412455885826	28152514246598001579534217	2066925549185792626090544
70	-1500179080790296495333960	167696255471026758161692328	11691314122170272566638200
72	-8469330846027919131108866	998303936498277539688401212	66188283453887221177721568
74	-47856040705247407564621400	5939502715888619728011515904	375021938737150106426702208
76	-270636033194089067428986890	35318214476286590871820680287	2126523853550658555941372768
	0		0

4. Analysis of the spin-1 series

The series for the spontaneous magnetization, the susceptibility and the specific heat of the spin- 1 Ising model are expected to exhibit critical behaviour of the forms

$$
\begin{align*}
& M(u) \sim A_{M}\left(u_{\mathrm{c}}-u\right)^{\beta}\left[1+a_{M, 1}\left(u_{c}-u\right)^{\Delta_{\mathrm{t}}}+b_{M, 1}\left(u_{\mathrm{c}}-u\right)+\cdots\right] \tag{4.1}\\
& \chi(u) \sim A_{\chi}\left(u_{\mathrm{c}}-u\right)^{-\gamma}\left[1+a_{\chi, 1}\left(u_{\mathrm{c}}-u\right)^{\Delta_{1}}+b_{\chi, 1}\left(u_{\mathrm{c}}-u\right)+\ldots\right] \tag{4.2}\\
& C_{v}(u) \sim A_{\mathrm{c}}\left(u_{\mathrm{c}}-u\right)^{-\alpha}\left[1+a_{C, 1}\left(u_{\mathrm{c}}-u\right)^{\Delta_{1}}+b_{C, 1}\left(u_{\mathrm{c}}-u\right)+\ldots\right] . \tag{4.3}
\end{align*}
$$

By universality it is expected that the leading critical exponents equal those of the spin- $\frac{1}{2}$ Ising model, i.e. $\beta=\frac{1}{8}, \gamma=\frac{7}{4}$ and $\alpha=0$ (logarithmic divergence). One of the major differences between the two models appears to be that the non-analytic confluent terms are not present in the spin- $\frac{1}{2}$ model (the a_{1} 's equal zero).

4.1. u_{c} and the leading critical exponents

The low-temperature spin-1 series is ill-behaved because there are non-physical singularities closer to the origin than the physical singularity, thus rendering ratio methods useless. The series may still be analysed using differential approximants (Guttmann 1989), which provides an effective analytic continuation beyond the radius of convergence, thus allowing accurate estimation of critical parameters even when the dominant singularity is nonphysical. It is also often useful to change the series variable by a transformation leading to a new series in which the singularity closest to the origin is the physical one. However, such 'singularity-moving' transformations may introduce long-period oscillations (Guttmann 1989) seriously impairing the accuracy of ratio methods.

It turns out that ordinary Dlog Padé approximants, equivalent to first-order homogeneous differential approximants, work best for the magnetization series. By averaging over several [N / M] approximants with $|N-M| \leqslant 4$ using at least 65 terms of the series $(N+M>64)$ we find the following estimates for the critical point $u_{c}=0.554075(15)$ and exponent $\beta=0.1253(3)$. The number in parentheses is the error in the last digit(s) given as three standard deviations. We find that approximants using fewer than $\simeq 60$ terms deviate systematically from these averages. In figure 2 we have plotted the estimates for β versus the number of terms $(N+M+1)$ from the series utilized in the Dlog Padé approximants. We see clearly how the β-estimates settle down to a plateau around $\beta \simeq 0.1253$ when more than 60 terms are used. The estimate for β is slightly higher than the expected exact value $\beta=\frac{1}{8}$. In addition to the physical singularity at u_{c}, we find that the magnetization series has a singularity on the negative u-axis at $u_{-}=-0.59853(4)$ with exponent $\beta_{1}=0.1247(6)$ and a pair of complex roots at $u_{ \pm}=-0.30183(5) \pm 0.37870(4) \mathrm{i}$ with exponent $\beta_{ \pm}=-0.127$ (3). Note that the non-physical singularity $u_{ \pm}$is closer to the origin than the physical singularity u_{c}. First-order inhomogeneous and second-order differential approximants do not work very

Figure 2. Estimates for the leading critical exponent β of the spin-1 spontaneous magnetization versus the number of terms used by the Dlog Pade approximants.
well for the magnetization series, as evidenced by error estimates which are generally at least an order of magnitude larger than in the simple Dlog Padé case. If we assume that the exact value of $\beta=\frac{1}{8}$ we have to change our estimate of u_{c}. We find basically a linear relationship between the estimates for β and u_{c}, and for $\beta=\frac{1}{8}$ we find $u_{\mathrm{c}}=0.554065(5)$. We have obtained a very similar result by analysing the series for $M^{8}(u)$ using ordinary ($n o t$ Dlog) Padé approximants. Raising the magnetization series to the eighth power and looking for simple zeros and poles of the resulting series obviously corresponds to biasing the magnetization series to have a leading critical exponent of $\frac{1}{8}$. We find that the function given by this series has zeros at $u_{c}=0.554063(10)$ and $u_{-}=-0.598555(10)$ plus a conjugate pair of simple poles at $u_{ \pm}=-0.30198(3) \pm 0.37857(5) \mathrm{i}$. For comparison we note that the spontaneous magnetization of the quadratic spin- $-\frac{1}{2}$ Ising model is given by the formula (Onsager 1944, Yang 1952)

$$
I(u)=\left[\frac{1+u^{2}}{\left(1-u^{2}\right)^{2}}\left(1-6 u^{2}+u^{4}\right)^{1 / 2}\right]^{1 / 4}
$$

from which we see that the magnetization has singularities with exponent $\frac{1}{8}$ at $\pm(\sqrt{2}-1)$ and $\pm(\sqrt{2}+1)$, with exponent $\frac{1}{4}$ at $\pm i$ and finally with exponent $-\frac{1}{2}$ at ± 1.

The success of ordinary Dlog Pade approximants in analysing the magnetization series stems from the absence of analytic background terms. In the susceptibility and specific-heat series such background terms are indeed present and obscure the leading critical behaviour. However, inhomogeneous differential approximants are generally successful in dealing with such terms. In table 3 we have listed the estimates for γ and u_{c} obtained by averaging many different approximants to the susceptibility series. We find that ordinary Dlog Padé approximants (the first-order approximants with $L=0$) yield quite stable estimates but that the estimate for u_{c} is quite a bit larger than for the magnetization, and that γ is markedly larger than the expected exact value $\gamma=\frac{7}{4}$. However, once the order of the inhomogeneous polynomial is larger than 2, the estimates for γ becomes fully consistent with the expected behaviour; indeed, we see that the first-order approximants favour a value a little larger than $\frac{7}{4}$ whereas the second-order approximants favour a value slightly below $\frac{7}{4}$. Taken together there seems little doubt the exact value indeed is $\gamma=\frac{7}{4}$. Again assuming a linear relationship between γ and u_{c}, we find that $u_{\mathrm{c}} \simeq 0.554065$. The estimates for the critical exponent γ exhibit the same trend as those for β, i.e. when fewer than $\simeq 60$ terms are used the estimates are generally clearly $>\frac{7}{4}$ with larger deviations when fewer terms is involved in estimating γ. When more than 60 terms are used, the estimates reach a plateau around a value $\simeq 1.755$, but with a spread that clearly includes the expected exact value $\gamma=\frac{7}{4}$. In this case we find additional singularities at $u_{-}=-0.5984(1)$ with exponent $-1.725(15)$ and $u_{ \pm}=-0.30194(2) \pm 0.37877(2) \mathrm{i}$ with an exponent of $-1.175(10)$. A closer examination of the various approximants revealed that as the estimates of u_{-}approach the value found from the magnetization series, $u_{-} \sim-0.598555$, the exponent approaches -1.75 . It is thus very likely that the exponents at u_{c} and u_{-}are equal.

The analytic background term is stronger in the specific-heat series, as can be seen in table 4 where we have listed the estimates for α and u_{c}. The first-order approximants yield no useful results with $L=0,1$. Once the order of the inhomogeneous polynomial becomes larger than 3 the first-order approximants clearly yield an estimate consistent with $\alpha=0$. This time a linear relationship between α and u_{c} indicates $u_{\mathrm{c}} \simeq 0.554070$ when $\alpha=0$. In addition we find a pair of complex roots at $u_{ \pm}=-0.301945(15) \pm 0.378776(10)$ with an exponent (divergence) of $-1.172(10)$. These conclusions are fully confirmed by the results of the analysis using second-order differential approximants. There is also evidence for a

Table 3. Estimates of u_{c} and γ from first- and second-order differential approximants. L is the order of the inhomogeneous polynomial.

	First-order approximants			Second-order approximants	
L	u_{c}	γ		u_{c}	γ
0	$0.554111(24)$	$1.769(6)$		$0.554033(19)$	$1.734(9)$
1	$0.554105(27)$	$1.768(11)$		$0.554053(27)$	$1.744(11)$
2	$0.554076(22)$	$1.756(8)$		$0.554057(16)$	$1.746(8)$
3	$0.554081(13)$	$1.756(5)$		$0.554082(28)$	$1.757(11)$
4	$0.554083(11)$	$1.756(5)$		$0.554085(31)$	$1.758(12)$
5	$0.554078(16)$	$1.756(7)$		$0.554071(20)$	$1.752(9)$
6	$0.554082(8)$	$1.757(3)$		$0.554061(10)$	$1.747(5)$
7	$0.554079(12)$	$1.756(5)$		$0.554061(16)$	$1.747(8)$
8	$0.554085(19)$	$1.759(8)$		$0.554058(15)$	$1.745(8)$

Table 4. Estimates of u_{c} and α from first and second-order differential approximants. L is the order of the inhomogeneous polynomial.

	First-order approximants			Second-order approximants		
L	u_{c}	α		u_{c}	α	
0	-	-		$0.554069(41)$	$0.001(13)$	
1	-	-		$0.554019(33)$	$0.019(12)$	
2	$0.554016(31)$	$0.018(11)$		$0.554017(30)$	$0.018(12)$	
3	$0.554045(31)$	$0.009(10)$		$0.554030(33)$	$0.015(15)$	
4	$0.554058(20)$	$0.0040(69)$		$0.554044(26)$	$0.0074(69)$	
5	$0.554068(25)$	$0.0008(88)$		$0.554055(32)$	$0.0049(98)$	
6	$0.554053(13)$	$0.0062(46)$		$0.554061(25)$	$0.0030(77)$	
7	$0.554059(13)$	$0.0042(50)$		$0.554058(28)$	$0.0039(79)$	
8	$0.554058(14)$	$0.0041(48)$		$0.554064(24)$	$0.0026(72)$	

singularity at $u_{-}=-0.598(6)$, but as can be seen from the size of the error esimate it is not well defined. This is also reflected in the estimates of the associated exponent, ranging from 0.5 to -0.5 , with values close to zero when $u_{-} \sim-0.5985$. This could indicate a logarithmic singularity at u_{-}, though the evidence is very weak. A stronger case can be made by looking at the series for the derivative of the specific heat, $\mathrm{d} C_{v}(u) / \mathrm{d} u$, which should have simple poles at u_{c} and u_{-}if $C_{v}(u)$ has logarithmic singularities at these points. A Dlog Padé analysis of the series revealed singularities at $u_{c}=0.5540(5)$ with exponent $-1.00(4)$, at $u_{-}=-0.5975(10)$ with exponent $-0.95(5)$, and at $u_{ \pm}=-0.30195(1) \pm 0.37878(1) \mathrm{i}$ with exponent $-2.177(15)$. These results thus confirm the results from the analysis of the specific-heat series itself.

The scaling law, $\alpha+2 \beta+\gamma=2$, is seen to hold at both the critical point u_{c} and at the non-physical singularity u_{-}. Likewise, for the spin- $\frac{1}{2}$ Ising model this scaling law holds at the sigularities $\pm(\sqrt{2}-1)$ since $\alpha=0, \beta=\frac{1}{8}$, and $\gamma=\frac{7}{4}$ in both cases. At the other non-physical singularity $u_{ \pm}$we find $\alpha+2 \beta+\gamma=2.09$ (3) for the spin- 1 model. From the exact solutions for the zero-field partition function and spontaneous magnetization of the spin $-\frac{1}{2}$ Ising model it follows that $\alpha=0$ and $\beta=\frac{1}{4}$ at $u_{ \pm}= \pm$i. A differential approximant analysis of the susceptibility series yields the estimate $\gamma=1.555(10)$ at $u_{ \pm}$. So for the spin- $\frac{1}{2}$ we find, at $u_{ \pm}$, that $\alpha+2 \beta+\gamma=2.055(10)$. It seems highly likely
that $\alpha+2 \beta+\gamma=2$ holds at all the non-physical singularities. This would mean that the exponent corresponding to γ at $u=u_{ \pm}= \pm \mathrm{i}$ for the spin- $\frac{1}{2}$ Ising model would be $\frac{3}{2}$ exactly. For the spin-1 Ising model the situation is less clear. At $u=u_{ \pm}$, the analogue of α is 1.172 , and the analogue of γ is 1.175 . It is possible that they are both $\frac{9}{8}$ exactly, or that one is 1 and the other is $\frac{5}{4}$. We have not been able to make these results more precise.

As mentioned above, ratio methods are of use only if one can find a transformation that maps the non-physical singularity outside the transformed physical disc. One such transformation is given by $u=x /(2-x)$, which leads to a new (high-temperaturelike) expansion variable, $x=1-\tanh (\beta J / 2)$. Among the various extrapolation methods (Guttmann 1989) we find that the best overall convergence is obtained from the NevilleAitkin table. From the magnetization and susceptibility series we obtain the estimates $1 / x_{c}=1.4024(3), \beta=0.12(1)$ and $\gamma=1.75(1)$. The exponent estimates are from biased approximants using the accurate value $x_{c}=0.71305(1)$ obtained from the differential approximant analysis. While this type of analysis yields estimates of lesser accuracy than the analysis based on differential approximants it is nevertheless reassuring that the two methods are in agreement. Other extrapolation methods generally yield similar though less accurate estimates. The major source of error in all the methods is the presence of long-period oscillations in the extrapolations.

4.2. The critical amplitudes

We have calculated the critical amplitudes using two different methods, both of which are very simple and easy to implement. In the first method, we note that if $f \sim A\left(1-u / u_{c}\right)^{-\lambda}$, then it follows that $\left.\left(u_{c}-u\right) f^{l / \lambda}\right|_{u=u_{c}} \sim A^{1 / \lambda} u_{c}$. So we simply form the series for $g(u)=\left(u_{c}-u\right) f^{1 / \lambda}$ and evaluate Padé approximants to this series at u_{c}. The result is just $A^{1 / \lambda} u_{c}$. This procedure works well for the magnetization and susceptibility series (it obviously cannot be used to analyse the specific-heat series). For the magnetization we find that the spread of various approximants is minimal at $u_{c}=0.554063$ where $A_{\mathrm{M}}=1.208496(4)$. Allowing for a value of u_{c} between 0.55406 and 0.55407 we find $A_{M}=1.2084(2)$. A similar analysis for the susceptibility yields the closest agreement at $u_{c}=0.554065$ with $A_{x}=0.06164(1)$. Again allowing for a wider choice in u_{c} we find $A_{X}=0.0616(2)$.

In the second method, proposed by Liu and Fisher (1989), one starts from $f(u) \sim$ $A(u)\left(1-u / u_{c}\right)^{-\lambda}+B(u)$ and then forms the auxiliary function $g(u)=\left(1-u / u_{c}\right)^{\lambda} f(u) \sim$ $A(u)+B(u)\left(1-u / u_{\mathrm{c}}\right)^{\lambda}$. Thus the required amplitude is now the background term in $g(u)$, which can be obtained from inhomogeneous differential approximants (Guttmann 1989, p 89). In table 5 we have listed the estimates obtained by averaging over various first-order differential approximants using at least 65 terms of the series with $u_{c}=$ 0.554065 . The results for the magnetization $A_{M}=1.2090(20)$ and the susceptibility $A_{\mathrm{x}}=0.0625(10)$ agree with those obtained above, though the error estimates are much larger. These results are not seriously affected by allowing for a wider choice of u_{c}. This method can also be used to study the specific-heat series. One now starts from $f(u) \sim A(u) \ln \left(1-u / u_{\mathrm{c}}\right)+B(u)$ and then looks at the auxiliary function $g(u)=$ $f(u) / \ln \left(1-u / u_{c}\right)$. As before the amplitude can be obtained as the background term in $g(u)$. The results of the analysis are listed in table 5 from which we get the final estimate $A_{\mathrm{C}}=19.75(50)$.

Judging from the error estimates it would seem that the first method for calculating the amplitudes is superior to the second. This apparent superiority, however, does not hold

Table 5. Estimates for the critical amplitudes of the magnetization A_{M}, the susceptibility A_{X} and the specific heat A_{c} as obtained from inhomogeneous first-order differential approximants. L is the order of the inhomogeneous polynomial.

L	A_{M}	A_{χ}	A_{c}
4	$1.2088(18)$	$0.0646(58)$	$18.98(33)$
5	$1.2095(26)$	$0.0617(30)$	$19.86(69)$
6	$1.2090(13)$	$0.0629(26)$	$20.25(61)$
7	$1.2092(12)$	$0.0617(20)$	$19.95(55)$
8	$1.2090(31)$	$0.0598(46)$	$19.98(65)$
9	$1.2093(15)$	$0.0599(42)$	$19.80(33)$
10	$1.2091(5)$	$0.0628(15)$	$19.93(31)$
11	$1.2089(9)$	$0.0627(14)$	$19.78(26)$
12	$1.2091(13)$	$0.0626(9)$	$19.54(29)$
13	$1.2091(5)$	$0.0626(12)$	$19.50(44)$
14	$1.2089(5)$	$0.0627(11)$	$19.56(40)$
15	$1.2090(4)$	$0.0625(8)$	$19.54(40)$
16	$1.2089(18)$	$0.0632(22)$	$19.42(44)$

up under further scrutiny. We checked the two methods on the spin- $\frac{1}{2}$ susceptibility series where the leading amplitude has been calculated to high accuracy (Wu et al 1976). In the widely accepted standard notation (Fisher 1967), $T \chi=C_{0}\left|1-T / T_{\mathrm{c}}\right|^{-7 / 4}$, one has, to 10 decimal places, $C_{0}=0.0255369719 \ldots$. In our analysis we assumed a singularity, $\chi(u) \sim A_{\chi}\left|1-u / u_{c}\right|^{-7 / 4}$. With $u=\exp (-2 \beta J)$ it follows that $C_{0}=4 u_{c}^{4}\left(-\ln u_{c}\right)^{-7 / 4} A_{\chi}$, where the factor u_{c}^{4} arises because we analyse the series for $\chi(u) / u^{4}$, the factor $\left(-\ln u_{c}\right)^{-7 / 4}$ is caused by the change of variable and the factor 4 is a matter of definition. Since, $u_{c}=\sqrt{2}-1$, we find that $A_{x}=0.584850251 \ldots$ Using the two methods to calculate A_{χ} we get the estimates $A_{\chi}=0.58488(1)$ from the first method and $A_{\chi}=0.58490(5)$ from the second method. This clearly shows that the smaller error estimate from the first method cannot be taken too seriously as both estimates are only marginally consistent with the exact result.

We thus conclude that $A_{\mathrm{M}}=1.208(4), A_{\chi}=0.0615(2)$ and $A_{c}=19.8(1.0)$. Note that these amplitudes are obtained by analysing the series for $M(u), \beta^{-1} u^{-4} \chi(u)$, and $(\beta J)^{-2} u^{-4} C_{v}(u)$, respectively, assuming in each case a singularity $\propto\left|1-u / u_{c}\right|^{\lambda}$. Changing to the standard notation (Fisher 1967) and getting rid of the various prefactors we find: the amplitude of $M(T)$ is $B=\left(-\ln u_{c}\right)^{1 / 8} A_{M}=1.131$ (4), the amplitude of $T_{\chi}(T)$ is $C_{-}=\left(-\ln u_{\mathrm{c}}\right)^{-7 / 4} u_{\mathrm{c}}^{4} A_{\chi}=0.0146(5)$ and finally the amplitude of $C_{v}(T)$ is $A_{-}=\left(-\ln u_{\mathrm{c}}\right)^{2} u_{\mathrm{c}}^{4} A_{\mathrm{c}}=0.65(3)$. From this we find the Watson invariant (Watson 1969)

$$
A_{-} B^{-2} C_{-}=0.0074(6)
$$

which should be independent of the choice of lattice.

4.3. The confluent exponent

We have studied the series using three different methods in order to estimate the value of the confluent exponent. In the first method, due to Baker and Hunter (1973), one transforms the function F,

$$
\begin{equation*}
F(u)=\sum_{i=1}^{N} A_{i}\left(1-\frac{u}{u_{c}}\right)^{-\lambda_{1}}=\sum_{n=0}^{\infty} a_{n} u^{n} \tag{4.4}
\end{equation*}
$$

into an auxiliary function with simple poles at $1 / \lambda_{I}$. We first make the substitution $u=u_{c}\left(1-\mathrm{e}^{-\zeta}\right)$ and find
$F(u(\zeta))=\sum_{i=1}^{N} A_{i} \exp \left[-\lambda_{i} \ln \left(1-\frac{u}{u_{c}}\right)\right]=\sum_{i=1}^{N} A_{i} e^{\lambda_{1} \zeta}=\sum_{i=1}^{N} \sum_{k=0}^{\infty} \frac{A_{i} \lambda_{i}^{k} \zeta^{k}}{k!}$.
By multiplying the coefficient of ζ^{k} by k ! we get the required auxiliary function

$$
\begin{equation*}
\mathcal{F}(\zeta)=\sum_{i=1}^{N} \sum_{k=0}^{\infty} A_{i}\left(\lambda_{i} \zeta\right)^{k}=\sum_{i=1}^{N} \frac{A_{2}}{1-\lambda_{i} \zeta} \tag{4.6}
\end{equation*}
$$

which has poles at $\zeta=1 / \lambda_{i}$, with residues at the poles of $-A_{i} / \lambda_{r}$. In table 6 we have listed the estimates for the leading critical exponent β and the confluent exponent Δ_{1} and their corresponding amplitudes as obtained from an analysis of the Baker-Hunter transformed spontaneous magnetization series with $u_{c}=0.554065$. Only the $[N / N+1]$ approximants yield useful information. The $[N+1 / N]$ approximants does not even find a pole close to $-8=-1 / \beta$, whereas some of the $[N / N]$ approximants find a pole at $-8.4(2)$ but no corresponding estimate for the confluent exponent. The results of the $[N / N+1]$ approximants certainly confirm that the leading critical exponent is $\frac{1}{8}$, and the corresponding estimates of the critical amplitudes A_{M} are also in excellent agreement with the results obtained in the previous section. The estimates for Δ_{1} are less stable, but the approximants with $N \geqslant 34$ are consistent with an estimate $\Delta_{1}=1.06$ (2). These conclusions are unaltered by looking at $u_{c}=0.554060$ and 0.554070 , although we note that by far the best agreement between different approximants is for $u_{\mathrm{c}}=0.554065$. The results for the susceptibility series are listed in table 7 for $u_{c}=0.554065$. In this case we again confirm the values of the leading critical exponent and critical amplitudes. The results for the confluent singularity is much more confusing as the [$N / N+1$] approximants yields the estimate $\Delta_{1}=1.155(5)$, very different from the estimate $\Delta_{1}=1.4(1)$ obtained from the $[N+1 / N]$ approximants. The $[N / N]$ approximants generally yield no estimates for this value of u_{c}. However, at slightly higher values of u_{c}, the [N / N] approximants also become useful, though they favour neither one nor the other of the Δ_{1}-estimates cited above. This is clearly seen in figure 3 where we have plotted the estimate for Δ_{1} versus the parameter u_{c} used in the Baker-Hunter transformation for various approximants with $N \geqslant 36$. The different approximants $[N / N+1],[N / N]$, and $[N+1 / N]$ clearly bunch together in three distinct classes. The $[N / N+1]$ approximants exhibit a narrow crossing at $\Delta_{1}=1.13(2)$

Table 6. Estimates for the leading critical exponent β and the confluent exponent Δ_{l} plus the associated amplitudes from $[N / N+1]$ Padé approximants to the Baker-Hunter transformed series for the magnetization with $u_{\mathrm{c}}=0.554065$.

N	β	A_{M}	Δ_{l}	$A_{\mathrm{M}} a_{\mathrm{M}, 1}$
30	0.12480	1.2070	1.147	-0.375
31	0.12474	1.2066	1.180	-0.424
32	0.12452	1.2052	-	-
33	0.12486	1.2074	1.120	-0.343
34	0.12496	1.2080	1.072	-0.297
35	0.12495	1.2080	1.076	-0.300
36	0.12500	1.2084	1.050	-0.280
37	0.12500	1.2084	1.050	-0.280
38	0.12498	1.2083	1.058	-0.286
39	0.12498	1.2082	1.063	-0.290

Table 7. Estimates for the leading critical exponent γ and the confluent exponent Δ_{1} plus the associated amplitudes from $[N / N+1]$ and $[N+1 / N]$ Pade approximants to the Baker-Hunter transformed series for the susceptibility with $u_{\mathrm{c}}=0.554065$.

	$[N / N+1]$				$[N+1 / N]$			
N	γ	A_{X}	Δ_{i}	$A_{x} a_{x, 1}$	γ	A_{x}	Δ_{l}	$A_{\chi} a_{\chi, 1}$
28	1.7407	0.06475	1.235	0.5851	1.7372	0.06605	-	-
29	1.7564	0.05991	1.110	0.4221	1.7481	0.06265	1.338	1.5032
30	1.7529	0.06092	1.129	0.4429	1.7461	0.06324	1.369	1.8334
31	1.7429	0.06411	1.233	0.5908	1.7405	0.06502	-	-
32	1.7494	0.06201	1.155	0.4733	1.7443	0.06379	1.406	2.3719
33	1.7492	0.06206	1.156	0.4750	1.7441	0.06387	1.413	2.4897
34	1.7498	0.06187	1.151	0.4686	1.7448	0.06363	1.394	2.1671
35	1.7498	0.06187	1.151	0.4684	1.7448	0.06362	1.393	2.1561
36	1.7494	0.06199	1.155	0.4727	1.7448	0.06362	1.394	2.1575
37	1.7490	0.06210	1.158	0.4773	1.7448	0.06362	1.394	2.1633

Figure 3. Estimates for the confluent exponent Δ versus the parameter u_{c} of the BakerHunter transformation. All Padé approximants with $36 \leqslant N \leqslant 39$ are shown.
and $u_{c}=0.55410(5)$, whereas the $[N+1 / N]$ approximants cross at $\Delta_{1}=1.40(5)$ and $u_{\mathrm{c}}=0.55406(2)$ and the $[N / N]$ approximants, though not intersecting mutually, do seem to cross through both the above regions. Note that the [N / N] approximant does not yield any estimates below $u_{c} \simeq 0.55406(2)$. From these results it is not possible to infer a final estimate for Δ_{1} and we are unable to explain the very different behaviour exhibited by the various sets of approximants.

The second method, due to Adler et al (1981), involves studying Dlog Padé approximants to the function $G(u)$, where

$$
G(u)=\lambda F(u)+\left(u_{\mathrm{c}}-u\right) \mathrm{d} F(u) / \mathrm{d} u .
$$

The logarithmic derivative to $G(u)$ has a pole at u_{c} with residue $\lambda+\Delta_{1}$, where λ is the leading critical exponent. We evaluate the Dlog Padé approximants for a range of guesses for u_{c} and λ. For each such guess we thus find an estimate for Δ_{1}; for the correct value of u_{c} and λ we should see a convergence region in the ($u_{c}, \lambda, \Delta_{1}$)-space. In practice we always froze λ at its expected exact value and plotted Δ_{l} as a function of u_{c}. Figure 4 shows Δ_{1} as

Figure 4. The confluent exponent Δ versus u_{c} as obtained from the method of Adier et al (1981) applied to the spontaneous magnetization series.

Figure 5. Same as in figure 4, but for the susceptibility series.
a function of u_{c} with $\beta=\frac{1}{8}$ using the spontaneous magnetization series. In this figure we see a very narrow convergence region at $u_{c}=0.544066(1)$ and $\Delta_{1}=1.06(2)$. In figure 5 we have plotted similar results from an analysis of the susceptibility series with $\gamma=\frac{7}{4}$. In this case we find a narrow crossing region at $u_{\mathrm{c}}=0.5540695(15)$ and $\Delta_{1}=1.15(2)$.

The last method, also due to Adler et al (1983), is a generalization of an approach devised by Roskies (1981) to study the high-temperature susceptibility of the threedimensional spin- $\frac{1}{2}$ Ising model. The first step is to transform the series $F(u)$ to ones in

$$
y=1-\left(1-u / u_{c}\right)^{\Delta}
$$

Figure 6. The exponent β as a function of the parameter Δ used in the generalized Roskie transformation of Adler et al (1983) applied to the spontaneous magnetization series. The inset shows the details of the crossing region.

Figure 7. Same as in figure 6, but for the susceptibility series.
where u_{c} is assumed known but Δ is a variable parameter. Next one looks at different Padé approximants to the function

$$
\mathcal{G}_{\Delta}=\Delta(y-1) \frac{\mathrm{d}}{\mathrm{~d} y} \ln F(y, \Delta) \sim \lambda+O\left[(1-y)^{\Delta_{1} / \Delta}\right] .
$$

For the correct guesses for u_{c} and Δ_{1} the various Pade approximants should intersect and give a correct estimate for the leading critical exponent λ. In figure 6 we have plotted the estimate for β as a function of the transformation variable Δ with $u_{c}=0.554065$ using the spontaneous magnetization series. A narrow crossing region is found at $\Delta_{1}=1.11(1)$ and $\beta=0.12490(5)$. Figure 7 shows a similar plot but for the susceptibility series; in this case we locate the crossing at $\Delta_{1}=1.16(1)$ and $\gamma=1.749(1)$.

The value of the correction-to-scaling exponent of two-dimensional Ising systems has been addressed by several authors. Nienhuis (1982) has mapped the q-state Potts model in
two dimensions onto a model which is in the Ising universality class (when q is set to 2). In that case one obtains a value $\Delta_{1}=\frac{4}{3}$. Barma and Fisher (1985) obtained $\Delta_{1}=1.35 \pm 0.25$ at the pure Ising critical point of the Klauder and double Gaussian models. They point out that while this is inconsistent with the expectation of pure logarithmic corrections to scaling, it is possible for these logarithmic terms to have amplitudes that vanish on approach to the pure Ising limit in such a way as to be describable by an apparent correction-to-scaling exponent $\Delta_{1}=\frac{4}{3}$.

The various estimates we have obtained for the spin- 1 model appear to be entirely consistent with this complex and subtle behaviour.

5. Summary and discussion

In this work we have extended substantially the existing low-temperature series for the twodimensional spin-1 Ising model by introducing a new version of the finite-lattice method which saves considerable space over previous implementations. The usefulness of such extended series is demonstrated by our analysis, in which we find that the correct results are clearly evident only after more than 60 terms in the series!

The analysis of the new spin-1 series provides us with an accurate estimate of the critical point, $u_{c}=0.554065(5)$, where the error estimate is chosen rather conservatively, and reflects the descripancy between estimates obtained from the three series and using different methods of analysis. Our value is in excellent agreement with a recent estimate $u_{c} \simeq 0.554066$ obtained by Lipowski and Suzuki (1992) from a transfer-matrix version of the double cluster mean-field approximation, and also agrees with the estimate $u_{\mathrm{c}}=$ 0.554071 (3) of Blöte and Nightingale (1985) obtained by phenomenological renormalization using the correlation length of a $n \times \infty$ systems calculated with transfer-matrix techniques. However, our results and those mentioned above, clearly rule out a recent conjecture $u_{c}=0.553887 \ldots$ by Urumov (1988) for the exact value of the critical point obtained from a generalization of a method proposed by Švrakic (1980) to calculate the exactly known equations for the critical temperature of the spin- $\frac{1}{2}$ Ising model on a chequerboard lattice.

The evidence for the leading critical exponents clearly show that the spin-1 Ising model belongs to the usual Ising universality class, a point also supported strongly by the results of Blöte and Nightingale (1985), i.e. the critical exponents take the values $\beta=\frac{1}{8}, \gamma=\frac{7}{4}$, and $\alpha=0$, exactly. In addition we find a non-analytic confluent correction with an exponent $\Delta_{1}>1$. Generally the magnetization series favours a value of ~ 1.05, whereas the susceptibility series yields estimates ~ 1.15. One notable exception is the $[N+1 / N]$ approximants to the Baker-Hunter-transformed susceptibility series which leads to estimates ~ 1.4. From field-theoretic arguments it is expected that the value of Δ_{1} should be the same for both series. This leads us to the final estimate $\Delta_{1}=1.1(1)$, in good agreement with the result $1<\Delta_{1}<1.3$ of Adler and Enting (1984), but clearly smaller than the field-theoretic prediction $\Delta_{1}=1.4$ (Le Guillou and Zinn-Justin 1980), and the 'exact' value $\Delta_{1}=\frac{4}{3}$ found by Nienhuis (1982).

The new finite-lattice method is also directly generalizable to higher-spin Ising models, as well as to other two-dimensional systems. The extended series for the low-temperature susceptibility of the quadratic spin- $\frac{1}{2}$ Ising model is in excellent agreement with the numerical predictions of Gartenhaus and McCullough (1988). Our exact coefficients agree to all seven predicted significant digits.

Acknowledgments

We would like to thank Michael E Fisher for helpful discussions on the question of correction-to-scaling exponents. Financial support from the Australian Research Council is gratefully acknowledged by AJG and IJ.

Appendix. First correction term

In section 2 we described how to obtain series expansions from the finite-lattice method. We ran the program up to $b_{\max }=8$, yielding a series correct through order u^{78}. When running the program one may actually calculate the truncated series in u to orders beyond that to which the series coefficients are correct. One would expect at least the first incorrect coefficient derived in this fashion to deviate only a little from the correct one. In this appendix we describe a correction procedure whereby we were able to obtain one additional correct term and thus extend the series to order u^{79}. At first we just looked at the first correction term for $b_{\max }=2-7$, i.e. the difference between the correct series coefficients and the first incorrect ones for a given value of $b_{\max }$, but were unable to find a pattern allowing us to 'guess' the correction term for $b_{\max }=8$. Next we re-ran the program deriving a series using $q=2$ hoping that the correction terms for the $q=2$ case were the same as those for the spin-1 model ($q=3$). It turns out that the correction terms is the two cases are almost identical. In table Al we have listed the amount by which the $q=2$ correction terms fail to predict the spin-1 correction terms. One could thus obtain almost correct spin-1 correction terms for $b_{\max }=8$ using just the $q=2$ correction term. However, we found that the numbers in table A1 obey recursive relations. Let $\Delta_{x}^{b}=\delta_{x}^{b} / b_{\max }$; then we find the following recurrence relations for the $\Delta^{\prime} s$, in the case of the partition function:

$$
\Delta_{Z_{0}}^{b+2}-2 \Delta_{Z_{0}}^{b+1}+\Delta_{Z_{0}}^{b}=-9
$$

the magnetization

$$
\begin{equation*}
\Delta_{\mathrm{M}}^{b+3}-3 \Delta_{\mathrm{M}}^{b+2}+3 \Delta_{\mathrm{M}}^{b+1}-\Delta_{\mathrm{M}}^{b}=81 \tag{A.1}
\end{equation*}
$$

and the susceptibility

$$
\begin{equation*}
\Delta_{x}^{b+4}-4 \Delta_{x}^{b+3}+6 \Delta_{x}^{b+2}-4 \Delta_{x}^{b+1}+\Delta_{x}^{b}=-972 . \tag{A.2}
\end{equation*}
$$

Using these recurrence relations we find Δ_{x}^{8} and thus using the $q=2$ correction terms for $b_{\max }=8$ we can finally find the correction terms for the spin- 1 model and thus the correct coefficient to u^{79}.

Though the correction procedure is rather cumbersome it should be noted that the CPU time required to calculate the truncated series with $b_{\max }=2-7$ for $q=3$ and $b_{\max }=2-9$

Table A1. The difference between the first correction terms with $q=2$ and 3 for the partition function (δz_{0}), magnetization (δ_{M}), and susceptibility (δ_{χ}).

$b_{\max }$	$\delta_{\mathrm{Z}_{0}}$	δ_{M}	δ_{X}
2	-20	180	-1620
3	-84	1008	-12096
4	-220	3300	-49500
5	-455	8190	-147420
6	-816	17136	-359856
7	-1330	31920	-766080

for $q=2$ is insignificant compared to the time it takes to run the program with $b_{\max }=8$ and $q=3$.

References

Adler J and Enting I G 1984 J. Phys. A: Math. Gen. 172233
Adler J, Moshe M and Privman V 1981 J. Phys. A: Math. Gen. 14 L363

- 1983 Percolation Structures and Processes (Ann. Israel Phys. Soc.) vol 5, ed G Deutsher, R Zallen and J Adler (Bristol: Hilger)
Baker G A and Hunter D L 1973 Phys. Rev. B 73377
Barma M, Fisher M E 1985 Phys. Rev. B 315954
Blöte H W J and Nightingale M P 1985 Physica 134A 274
de Neef T 1975 Some applications of series expansions in magnetism PhD Thesis Technische Hogeschool Eindhoven
de Neef T and Enting I G 1977 J. Phys. A: Math. Gen 10801
Enting I G 1978 J. Phys. A: Math. Gen. 11563
- 1990 Algebraic techniques in lattice statistics: The computational complexity of the finite-lattice method Proc. Third Australian Supercomputer Conf. University of Melbourne
Fisher M E 1967 Rep. Prog. Phys. 30615
Fox P F and Guttmann A J 1973 J. Phys. C: Solid State Phys. 6913
Gartenhaus S and McCullough W S 1988 Phys. Rev, B 3811688
Guttmann A J 1989 Asymptotic analysis of power-series expansions Phase Transitions and Critical Phenomena vol 13, ed C Domb and J L Lebowitz (New York: Academic)
Guttmann A J and Enting I G 1993 Phys. Rev. Lett. 70698
Knuth D E 1969 Seminumerical Algorithms (The Art of Computer Programming 2) (Reading, MA: Addison-Wesley) Le Guillou J C and Zinn-Justin J 1980 Phys. Rev. B 213976
Lipowski A and Suzuki M 1992 J. Phys. Soc. Japan 614356
Liu A J and Fisher M E 1989 Physica 156A 35
Nienhuis B 1982 J. Phys. A: Math. Gen. 15199
Onsager L 1944 Phys. Rev. 65117
Roskies R 1981 Phys. Rev. B 245305
Švrakic N M 1980 Phys. Lett. 80A 43
Sykes M F, Essam J W and Gaunt D S 1965 J. Math. Phys. 6283
Sykes M F and Gaunt D S 1973 J. Phys. A: Math. Gen. 6643
Urumov V 1988 Phys. Status Solidi b 145 K59
Watson P G 1969 J. Phys. C: Solid State Phys. 2 1883, 2158
Wu T S, Mc Coy B M, Tracy C A and Barouch E 1976 Phys. Rev. B 13316
Yang C N 1952 Phys. Rev. 85808

[^0]: § E-mail address: ige@dar.csiro.au
 || E-mail address: tonyg@maths.mu.oz.au
 I E-mail address: iwan@maths.mu.oz.au

