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Low-temperature series expansions for the spin-1 
Ising model 
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t CSIRO, Division of Atmospheric Research, Private Bag I .  Mordialloc, Victoria, 
Australia 3 I95 
t Department of Mathematics, The University of Melbourne, Parkville, Victoria, Australia 3052 

Received 14 May 1994 

Abstract. The finite-lanice method of series expansion has been used to extend low- 
temperature series for the padtion function, order parameter and susceptibility ofthe spin-1 !sing 
mofkl on Ihe s q m  lattice. A new formalism is described which uses two distinct transfer-matrix 
approaches in order Lo significantly reduce computer memory requirements and which permits 
the derivation of the series to 79th order. Subsequent analysis of the series clearly confirms 
hat  the spin-1 model has the same dominant critical exponents as the spin-f Ising model. 
Accurate estimates for both the critical temperature and non-physical singularities we obtained, 
In addition, evidence for a non-analytic confluent correction with exponent A1 1.1 f 0.1 is 
found. 

1. Introduction 

Low-temperature expansions far the spin-1 king model were first obtained by Fox and 
Guttmann (1973), who gave a 26-term series for the square lattice, of which only the 
first 24 terms were correct. The method used to obtain the series was a generalization 
of the code method of Sykes et al (1965). Series on other lattices, both two- and three 
dimensional, were also obtained. Subsequently the finite-lattice method of series expansions 
(de Neef 1975, de Neef and Enting 1977) has proved to be an extremely powerful technique 
for deriving series expansions for a range of twwdimensional models. The formalism 
is applicable in higher dimensions but the technique becomes progressively less efficient 
(Guttmann and Enting 1993). Adler and Enting (1984) used the finite-lattice method to 
extend low-temperature expansions for the zero-field partition function, the magnetization 
and the zero-field susceptibility of the spin-1 Ising model to order u45. As we have noted 
elsewhere, developments in computing over the last decade, notably faster computers with 
more memory, have allowed larger finite-lattice calculations to be made. By re-running the 
program used by Adler and Enting we easily extended the series to 65 terms. We have, 
however, recently implemented a revised algorithm that removes much of the memory-size 
requirement that has previously limited our finite-lattice calculations. This involves using 
two different ways of calculating finite-lattice partition functions. A preliminary analysis 
of the formalism was given by Enting (1990). In this paper we use this new formalism 
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to calculate low-temperature spin-I king series to order u7*, Using a rather cumbersome 
correction method described in the appendix we also obtained the coefficients of u79. We 
have also substantially extended the spin-f low-temperature susceptibility series. 

The layout of the paper is as follows. In section 2 we describe the finite-lattice method 
of series expansions. The various expansions are detailed in section 3. The results of 
the series analysis, with the emphasis on the new extended spin-I series, are presented in 
section 4. Finally, section 5 contains a short summary and discussion of ow results. 

2. Series expansions from the finite-lattice method 

As in the study by Adler and Enting (1984), the series expansions are derived from 

I G Enting et a1 

Z % n Z $  with m < n  and m + n < k  (2.1) 
m,n 

where Z is the infinite-lattice partition function and the Z,, are the partition functions of the 
m x n lattices. The weights, a,, are derived from the expressions given by Enting (1978), 
modified to exploit the rotational symmetry of the lattice. The difference from Enting and 
Adler is that we use a larger cut-off, k, which leads to longer series. 

The finite-lattice method relies on efficient techniques for evaluating the Z,". We 
use what are known as 'transfer-matrix' techniques. These work by moving a boundary 
through the lattice and constructing a partial sum of Boltzmann weights for each possible 
configuration of the boundary. The traditional form of transfer-matrix calculation involves 
moving the boundary one column at a time. For a system with q states per site, evaluating 
z,, involves n iterations of qZm operations on series. It is more efficient to move the 
boundary by adding one site at a time. Evaluating Z,, involves m x n iterations of 
qm+' series ,operations. The 'one-siteat-a-time' algorithm seems to have been rediscovered 
independently a number of times. Our use of the technique derives from unpublished work 
by Baxter. 

The new procedure proposed by Enting (1990) and adopted here is to use (2.1) as before 
but to use two different techniques for calculating the Zmn. We define a cut-off parameter 
b,, so that, for a q-state system, the maximum vector size is qb=. In evaluating Z,, (and 
considering only m < n because of our use of symmetry), if m < b,, we use our original 
procedure of building up the lattice column by column with each column built up one site 
at a time. Evaluating Z,, requires mnqm+' series operations but the evaluation of Z,, 
enables us to determine Z,, for p c n with little extra computation. For square (or nearly 
square) lattices we evaluate the partition functions by a technique in which the boundary 
pivots about a central point. The general principle is based on unpublished work by Baxter. 

The 'pivoting' transfer-manix approach uses three integers, a, b and c (with c = b 
or c = 6 - 1) to specify the rectangles. The rectangles are of size m = (a + 6 )  by 
n = (b + c + 1). We refer to sites by integer coordinates ( x ,  y) with 1 - a  < n < b and 
-c < y < b. The partition function is a sum over the q' conditional lattice sums in which 
the a sites (x, 0) with x < 0 are fixed. Transfer-mahix techniques are used to calculate the 
lattice sum conditional on the state of the fixed sites. 

The algorithm outlined below requires space for 2qb series and takes time cx m x n x 
q(a+b),  

We consider two alternative forms of 'cut-off. 

Spacelimited. If the execution time was not limiting, then the smallest rectangle that could 
not be computed by pivoting would be a square of size (2b + 2) x (2b + 2). Thus we use 

(2.2) m + n < k = 46- + 2 .  
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0 ~ 0 0 0  

* m D o o D  

Figure 1. The various regions of the lattice numbered according 
to the order in which they are traversed in the pivoting algorithm. 
The a spins on the  full circles are k e d .  In the case of this 12 x I6 
lattice we have n = 4, b = 8 and c = 7. (b,-c) 

We use the original transfer-matrix technique for m < b,, and use the pivoting algorithm 
for rectangles of size m = ( b  + c + 1) by n = (a  + b )  for 6 ,  c < b-. For m = b,, + 1 
the longest rectangle is of length n = a + b = 3b- + 1, so that in terms of the cut-off, k, 
the time requirement grows as q3ki4, 

Time-limited. If we wish to restrict the growth in the time requirement to the qkIZ that 
applies to our original technique, then we use the cut-off 

m + n < k = 3bm + 2 .  (2.3) 

Again we use our original technique for m < b,, and use the pivoting algorithm for 
rectangles of size m = (a + b )  by n = (2b + 1) for a + b from b,, + 1 to Lk/Z]. 

In the work presented here we have used the ‘time-limited’ form. The algorithm for 
evaluating finite lattices by ‘pivoting’ is: 

For each of the q“ states of the fixed line (the full circles in figure 1): 
- Construct the conditional lattice sum. 
- Multiply the conditional sum by the internal weight of the fixed line. 
- Add the product to the running total for the finite-lattice partition function. 

The procedure for building up the conditional sum is: 
* For each x from 1 - a  to 0, build up the lattice sum for the column ( x ,  y )  for y 

from 1 to b (region I of figure 1). 
* For each x from 1 to b, build up the lattice sum for the partial column ( x ,  y )  for 

y from b to x (region I1 of figure 1). 
* For each y from b - 1 to 1, build up the lattice sum for the partial row ( x ,  y )  

for x from b to y (region Ul of figure 1). 
* Build up the lattice sum for the row ( x ,  0) for x from b to 1 (IV). 
* For each y from -1 to 1 - b = -c, build up the lattice sum for the partial row 

( x ,  y )  for x from b to -y  (region V in figure 1). 
* If b = c, build up the lattice sum for the diagonal ( x ,  - x )  for x from b to 1 (not 

present in figure I ) .  
* For each x from b - 1 to 1, build up the lattice sum for the partial row (x, y )  

for y from -b to -x  (region VII of figure 1). 
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* For each x from 0 to I - 6 ,  build up the lattice sum for the partial column (x. y)  
for y from -b to -1 (region Vm of figure 1). 

Another new feature of our calculations is the choice of a machine (Cray YMP-EL) 
which emphasizes processing speed rather than large memory. The fact that most of our 
basic operations in the nansfer-matrix approach are actually operations on truncated series 
means that we can readily utilize the vector capabilities of such a machine by ensuring that 
the series operations are performed in vector mode. We note that the pivoting algorithm 
also permits a high degree of parallel operation since each of the sums for a given centre 
line can be evaluated independently of the others. 

In order to deal with the large integer coefficients in the series the calculations 
were performed using modular arithmetic (see, for example, Knuth 1969). Utilizing the 
standard 46-bit integers of the Cray we used the set of primes, pi = Zn - xi with 
xi E (15,21,27,37,61.. . .). We had to use four primes for the spin-I calculations and 
five primes for the spin-; calculations. Each run with b,  = 8 (bmm = 12) for the spin-1 
(spin-;) model required approximately 63 (48) CPU hours. 

3. Expansions 

For the spin-1 Ising model in a homogeneous magnetic field h we write the Hamiltonian as 

(3.1) 

where the spin variables Si = 0. &l. The first sum is over all nearest-neighbour pairs on 
the square lattice and the second sum is over all sites. The constan& are chosen so that the 
Si = 1 ground state has zero energy. The low-temperature expansion, as described by Sykes 
and Gaunt (1973). is based on perturbations from the Si = 1 ground state. The expansions 
are obtained in term of the low-temperature variable U = exp(-pJ) and the field variable 
p = exp(-gh), where @ = I / k T .  The expansion of the partition function in powers of U 
may be expressed as 

m 
z = c ~ ~ Y ~ ( ~ )  = 1 + u 4 p  + u 7 p 2 + .  . . (3.2) 

k=O 

where % ( p )  are polynomials in p.  We express the field variable as p = 1 - x  and truncate 
the field dependence at x z  and thus find 

z = ZO(U) + XZ,(U) +x2Zz(u )  + ” ’ . (3.3) 
According to standard definitions the order parameter, or the spontaneous magnetization, 

is the derivative of the free energy, F = -kTInZ, with respect to h,  

M ( u )  = M ( 0 )  + - - (3.4) 

since x = 0 in zero field. For the susceptibility we find 

The specific-heat series is derived from the zero-field partition function (via the internal 
energy U = -(a/ap) In ZO). 

(3.6) 
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The resulting series for M ( u ) ,  j3-'x(u), and (j3J)-'Cn(u) are given in table 1. The 
number of terms derived correctly with the finite-lattice method is given by the power of 
the lowest-order connected graph not contained in any of the rectangles considered. Since 
we are using the time-limited cut-off the simplest such graphs are chains of 3b,, + 2 = r 
sites all in the '0' state. From the spin-1 Hamiltonian we see that such chains give rise 
to terms U) '+ ' .  The series are thus correct to order u3' = u9bm=+6. We have checked this 
explicitly by calculating the series forb,, = 2.3.. . , 7  and checking that the terms through 
ugbm+' agree with the final 79-term series derived using b,, = 8. An additional spin-1 
coefficient was calculated by a correction procedure explained in the appendix. These new 
series are significant extensions to the hitherto longest series (45 terms) due to Adler and 
Enting (1984). 

By the same methods mutatis mutandis, we calculated, with b,, = 12, a new 78-term 
series for the spin-f king model in the low-temperature expansion variable U = exp(-ZpJ). 
Note that the lowest-order graphs not counted axe chains of spins flipped with respect to 
the ground state. But now only broken bonds pick up a factor of U. With chains of length 
r there are 2r + 2 broken bonds so the series are correct to order uZrfl = u6bm+5. The 

Table 1. New low-temperam series for the spin-I ZD lsing magnetization ( M ( u )  = rn mnu"), 
susceptibility ( x ( u )  = En xnu"), and specific heat (Cdu) = En c,,~"). 

0 
1 
2 
3 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1 
0 
0 
0 

-1 
0 
0 

-4 
3 
0 

-30 
48 

-52 
-120 

368 
-612 
-254 
2524 

-6216 
4040 

11805 
-49400 

68268 
14928 

-332511 
734508 

-568038 
-1641320 

6202774 
-9239616 
-2503162 

I 
0 
0 
8 

-6 
0 

90 
-144 

I92 
480 

-1372 
2676 
1703 

-11952 
33316 

-18900 
-64201 
304580 

-401068 
-97928 

2390637 
-5130048 

4264858 
13518716 

-49117798 
76725752 
29308994 

0 
0 
0 
0 

16 
0 
0 

98 
-96 

0 
1000 

-1936 
2064 
5070 

-19012 
31950 
9024 

- 152014 
383616 

-298186 
-832320 
3575922 

-5486624 
-1012506 
27088992 

-65115000 
53200524 

147217176 
-608004040 

947874280 
189048900 



31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
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Table 1. Continued. 

42749908 -381566684 -4568526730 
-99021392 

72255812 
21 5763902 

-846523304 
1235587854 
315695688 

-5897043012 
I3498636700 

- 10063784956 
-30197995484 
117108185474 - 172710840680 

-46214867144 
824863285280 

-1901022089768 
I405042568748 
4266178550909 

- 16624047456088 
24458757867992 
6610934151948 

-117973371 104457 
27 1535984970264 

-200950868428636 
-61 5007072669600 
U91435417419895 

-3523264660998628 
-974049037638220 
17078683955539360 

-39345 145748450867 
29026701896553572 
896038028475071 84 

-34836306680481 8696 
512907395631821606 
144248115519171836 

-2500429353847945250 
575791 1256695782416 

-4239564000431 858236 
-13189936451780437660 

51212742729615384348 
-75378650279043338628 
-21589841096310396846 
369164127694023873860 

-84985448365764097 1250 
624038440770346152380 

1956508551522393160164 
-7587615135291641485816 
11 159761201704504160824 
32513633241W951241776 

915306452 
-629297848 

-2149429218 
8606730256 

- 12408220218 
-3956969996 

~~ 65853427044 
- 149789004280 

110599540765 
371951421160 

- 1416033283010 
2102892657652 
737547145862 

- 10822599389744 
, ,  25078129380684 

- 17797597472844 
-61005293343300 
23587670821 1784 

-344426000745528 
-1 18602900569968 
1797119592535141 

-41 165261921 15268 
2947822355097388 

10130142463339880 
-38724154430758393 

567323752096029 12 
~ 201 14020125177948 
-2948683173 10376404 

6764797645085347 19 
-479158286800083944 
- 1661 76431 lOO62Ol920 
,... 6354863 121022079308 
19265243259835.533768 
-1315474781302882096 
48350450407929798098 

-I‘i0521765873057849552 
7.8112180092393615814 

272577693656067525988 
-103801 7985499645393024 

15115927527670371 19280 
550095300981 147667462 

-78961 13973546269891772 
1802523975354394865 1338 

- 126@452007330249289520 
-44535529209867702398308 
1692461439767 1841 8368880 

-245833982882938309009072 
-90655771 470008657225676 

I1071969920 
-8871938526 

-24714851 124 
102572776040 

- 158562077760 
-31309254516 
766255508396 

- 1846277129736 
1479447715520 
4133610817968 

- 17054958273276 
263391 12604404 

533 1885548880 
- 127080932186700 

305778947448156 
-243733007205368 
-684581 856372288 
2818178220557042 

-4339993392475000 
-8941 171 16934894 

20963370411907352 
-50319881932177670 

1 I2867555200892470 
-4631 79370952 109840 

, , 711889569606231690 
149739050620646304 

-34421 35262856 162448 
82471028245258201 20 

-6525890234473448550 
- I8532244655048816588 

75848843620008360720 
- 1 I6335729831253805824 
-24961 184352327362750 
563358836743426377588 

- 1347235562794556332032 
10622238553578 18122632 
3034 1022367427 14342464 

- 1?384673817861566133360 
.“18959244151288425233210 

/’ 4149¶95353996807267776 
-91961341446801674710358 
219535041878849931 107584 - 1724686224461 86756857750 

-495562798 199277085255224 
2017606788248236265 104332 

-30829291 24790021245909560 
-688181679835018200461774 

399722957474778n 

resulting series are listed in table 2. The spin-; magnetization and specific-heat series are, 
of course, known exactly, so only the susceptibility series is new. We nevertheless list the 
coefficients of all three quantities, partly for completeness and partly for verification of our 
algorithm. 
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Table 2. New low-temperature series for the spin-; w Ising magnetization ( M ( u )  = En m.u"). 
susceptibility ( x ( u )  = ~ . s u " ) ,  and speciac heat (CJu) =En c,u"). All terms with odd n 
am zero. 

" m, X" C" 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 

40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 

38 

1 
0 

-2 
-8 
-34 
-152 
-714 
-3472 

-88048 
-454378 
-2373048 
-12515634 
-66551016 
-356345666 
-1919453984 
-10392792766 
-56527200992 
-308691 183938 
-1691769619240 
-9301374102034 
-51 286672777080 
-283527726282794 
-1571 151822119216 

-48552769461088336 
-27067048537740 1738 
-151 l484024051l98680 
-8453722260102884930 

-265579129813183372802 
- I491465339550559632448 
-8385872784303807639294 
-47202746620874986470336 
-265975151780412455885826 
- 1500179080790296495333960 

-17318 

-8725364469 1437 I 8 

-473506423 14439048648 

-8469330846027919131 108866 

0 
0 
1 

60 
416 
2791 
18296 
118016 
752008 
4746341 
29727472 

a 

185016612 
114541szoa 
7059265827 
43338407712 
265168691 392 
1617656173824 
9842665771649 
59748291677832 
361 933688520940 
21 88328005246304 

79600379336505560 
4790255095741 59232 

17281629934637476365 
1036219223123642961 12 
6206828232638 14178484 
37 14244852389988540072 
22206617664989885664363 
132657236460768679560864 
791843294876287279547520 
47231 12509660327575046688 
28152514246598001579534217 

998303936498277539688401 212 

1320846481~~65559 

2878946431929191656 

167696255471026758161692328 

0 
0 
16 
72 

288 
1200 
5376 
25480 
125504 
634608 
3269680 
17086168 
90282240 
481347152 
2585485504 
13974825960 
75941 I88736 
414593263952 
2272626444528 
12502223573304 
68996534259'240 
38 I858968527680 
21 18806030647328 
11 783826597O27256 
65674579024955904 
366728645 195006000 
205 1443799934043632 

644991 39095733378176 
362436080938852037648 
2039249170926323834880 
11487673072269872540904 
64786142191741932873984 
365754067103461706996304 
2066925549185792626090544 
11691314122170272566638200 

I 1494250259278105304 

6618828345388722ii77721568 
74 -478560407052474075616~ MOO 59395027 I 58886 I 97280 I I 5 I 5 901 37502 I 9387 37 I 501 06426702208 
76 -270636033191089067428986890 3~318214476286590871820680287 2126523853550658555941372768 

4. Analysis of the spin-1 series 

The series for the spontaneous magnetization, the susceptibility and the specific heat of the 
spin-1 king model are expected to exhibit critical behaviour of the forms 

M ( u ) N A ~ ( ~ ~ - ~ ) B [ l + u ~ . ~ ( ~ C - ~ ) A i  + b ~ , i ( u , - u ) + ~ ~ ~ ]  (4.1) 

x ( u ) - A , ( u e - ~ ) - ~ [ l  + ~ X , I ( U ~ - U ) ~ '  + ~ , , I ( u ~ - u ) + . . . ]  (4.2) 
C,(U) - Ac(uc - U)-*[I  + U C , I ( U ~  - U)*' + bc,i(uc - U )  + . . . I .  (4.3) 
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By universality it is expected that the leading critical exponents equal those of the spin-f 
king model, i.e. ,4 = $, y = $ and a = 0 (logarithmic divergence). One of the major 
differences between the two models appears to be that the non-analytic confluent terms are 
not present in the spin-: model (the at's equal zero). 

4.1. U, and the leading critical exponents 

The low-temperature spin-l series is ill-behaved because there are non-physical singularities 
closer to the origin than the physical singularity, thus rendering ratio methods useless. 
The series may still be analysed using differential approximants (Guttmann 1989). which 
provides an effective analytic continuation beyond the radius of convergence, thus allowing 
accurate estimation of critical parameters even when the dominant singularity is non- 
physical. It is also often useful to change the series variable by a transformation leading 
to a new series in which the singularity closest to the origin is the physical one. However, 
such 'singularity-moving' transformations may introduce long-period oscillations (Guttmann 
1989) seriously impairing the accuracy of ratio methods. 

It turns out that ordinary Dlog Pad6 approximants, equivalent to first-order homogeneous 
differential approximants, work best for the magnetization series. By averaging over several 
[N /M]  approximants with IN - MI < 4 using at least 65 terms of the series ( N  + M > 64) 
we find the following estimates for the critical point uc = 0.554075(15) and exponent 
,9 = 0.1253(3). The number in parentheses is the error in the last digit(s) given as 
three standard deviations. We find that approximants using fewer than N 60 terms deviate 
systematically from these averages. In figure 2 we have plotted the estimates for p versus the 
number of terms ( N + M +  1) from the series utilized in the Dlog Pad6 approximants. We see 
clearly how the p-estimates settle down to a plateau around f i  N 0.1253 when more than 60 
terms are used. The estimate for p is slightly higher than the expected exact value f i  = i. 
In addition to the physical singularity at U,, we find that the magnetization series has a 
singularity on the negative U-axis at U- = -0.59853(4) with exponent = 0.1247(6) and 
apair of complex roots at U* = -0.301 83(5)50.37870(4)i with exponent ,8* = -0.127(3). 
Note that the non-physical singularity U* is closer to the origin than the physical singularity 
U,. First-order inhomogeneous and second-order differential approximants do not work very 
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well for the magnetization series, as evidenced by error estimates which are generally at 
least an order of magnimde larger than in the simple Dlog ?ad& case. If we assume that 
the exact value of p = i we have to change our estimate of U,. We find basically a linear 
relationship between the estimates for p and U,, and for p = i we find uc = 0.554065(5). 
We have obtained a very similar result by analysing the series for M8(u) using ordinary 
(not Dlog) Pad6 approximants. Raising the magnetization series to the eighth power and 
looking for simple zeros and poles of the resulting series obviously corresponds to biasing 
the magnetization series to have a leading critical exponent of i. We find that the function 
given by this series has zeros at uc = 0.554063(10) and U- = -0.598555(10) plus a 
conjugate pair of simple poles at U* = -0.301 98(3) f 0.37857(5)i. For comparison we 
note that the spontaneous magnetization of the quadratic spin-f Ising model is given by the 
formula (Onsager 1944, Yang 1952) 

114 

I (u )  = [ + (1 - 6uz + u 4 ) ' q  
(1 - u2)2 

from which we see that the magnetization has singularities with exponent 1 at *(A - 1) 
and &(A+ I ) ,  with exponent 

The success of ordinary Dlog ?ad& approximants in analysing the magnetization series 
stems from the absence of analytic background terms. In the susceptibility and specific-heat 
series such background terms are indeed present and obscure the leading critical behaviour. 
However, inhomogeneous differential approximants are generally successful in dealing with 
such terms. In table 3 we have listed the estimates for y and ue obtained by averaging 
many different approximants to the susceptibility series. We find that ordinary Dlog Pad6 
approximants (the first-order approximants with L = 0) yield quite stable estimates but that 
the estimate for U, is quite a bit larger than for the magnetization, and that y is markedly 
larger than the expected exact value y = a.  However, once the order of the inhomogeneous 
polynomial is larger than 2, the estimates for y becomes fully consistent with the expected 
behaviour; indeed, we see that the first-order approximants favour a value a little larger 
than whereas the second-order approximants favour a value slightly below a .  Taken 
together there seems little doubt the exact value indeed is y = i. Again assuming a linear 
relationship between y and uc. we find that uc 5 0.554065. The estimates for the critical 
exponent y exhibit the same trend as those for p ,  i.e. when fewer than = 60 terms are used 
the estimates are generally clearly > with larger deviations when fewer terms is involved 
in estimating y .  When more than 60 terms are used, the estimates reach a plateau around a 
value N 1.755, but with a spread that clearly includes the expected exact value y = z .  In 
this case we find additional singullities at U- = -0.5984(1) with exponent -1.725(15) and 
U* = -0.301 94(2) fO.37877(2)i with an exponent of -1.175(10). A closer examination 
of the various approximants revealed that as the estimates of U- approach the value found 
from the magnetization series, U- - -0.598555, the exponent approaches -1.75. It is thus 
very likely that the exponents at uc and U- are equal. 

The analytic background term is stronger in the specific-heat series, as can be seen in 
table 4 where we have listed the estimates for CY and U,. The first-order approximants yield 
no useful results with L = 0 , l .  Once the order of the inhomogeneous polynomial becomes 
larger than 3 the first-order approximants clearly yield an estimate consistent with CY = 0. 
This time a linear relationship between CY and ut indicates U, N 0.554070 when CY = 0. In 
addition we find a pair of complex roots at U* = -0.301945(15) i 0.378776(10) with an 
exponent (divergence) of -1.172(10). These conclusions are fully confirmed by the results 
of the analysis using second-order differential approximants. There is also evidence for a 

at f i  and finally with exponent -4 at 41. 
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Table 3. Estimates of uc and y from first- and second-order differential approximants. L is the 
order of the inhomogeneous polynomial. 

Fiii-order approximants Second-order approximants 

L uc Y U C  Y 

0 0.554111(24) 1.769(6) 0.554033(19) 1.734(9) 
1 0.554 105(27) 1.768(11) 0554053(27) 1.744(11) 
2 0.554076(22) 1.756(8) 0.554057(16) 1.746(8) 
3 0.554081(13) 1.7566) 0554082(28) 1.757(11) 
4 0.554083(11) 1.7566) 0.554085(31) 1.758(12) 
5 0.554078(16) 1.756(7) 0.554071(20) 1.752(9) 
6 0.554082(8) 1.757(3) 0.554061(10) 1.747(5) 
7 0.554079(12) 1.756(5) 0.554061(16) 1.747(8) 
8 0.554085(19) 1.759(8) 0.554058(15) 1.745(8) 

Table 4. Estimates of us and a from first and secondader differential approximants. L is the 
order of the inhomogeneous polynomial 

First-order approximants Semnd-order approximants 

L uc a UC a 

0 -  - 
I -  - 
2 0.554016(31) 0.018(11) 
3 0.554045(31) 0.009(10) 

5 0.554068(25) 0.0008(88) 
6 0.554053(13) 0.0062(46) 
7 0.554059(13) 0.0042(50) 
8 0.554058(14) 0.0041(48) 

4 0.554 osx(zo) a o ~ o ( 6 9 )  

0.554 069(41) 0.001 (13) 
0.554019(33) 0.019(12) 
0.554017(30) 0.018(12) 
0.554030(33) 0.015(15) 
0554044(26) 0.0074(69) 
0.554055(32) 0.0049(98) 
0.554061(25) 0.0030(77) 
0.554058(28) 0.0039(79) 
0.554064(24) 0.0026(72) 

singularity at U- = -0.598(6), but as can be seen from the size of the error esimate it is 
not well defined. This is also reflected in the estimates of the associated exponent, ranging 
from 0.5 to -0.5, with values close to zero when U- - -0.5985. This could indicate a 
logarithmic singularity at U-, though the evidence is very weak. A stronger case can be 
made by looking at the series for the derivative of the specific heat, dC,(u)/du, which should 
have simple poles at U, and U- if C&) has logarithmic singularities at these points. A Dlog 
Pad6 analysis of the series revealed singularities at uc = 0.5540(5) with exponent -1.00(4), 
at U- = -0.5975(10) with exponent -0.95(5), and at U* = -0.30195(1) rtO.37878(1)i 
with exponent -2.177(15). These results thus confirm the results from the analysis of the 
specific-heat series itself. 

The scaling law, CY + 28  + y = 2, is seen to hold at both the critical point uc and 
at the non-physical singularity U-. Likewise, for the spin-; king model this scaling law 
holds at the sigularities &(A - 1) since 01 = 0, ,9 = i, and y = $ in both cases. At 
the other non-physical singularity ui we find CY + 2s + y = 2.09(3) for the spin-1 model. 
From the exact solutions for the zero-field partition function and spontaneous magnetization 
of the spin-f Ising model it follows that CY = 0 and ,9 = at U+ = *i. A differential 
approximant analysis of the susceptibiliiy series yields the estimate y = 1.555(10) at ui. 
So for the spin-f we find, at ui, that 01 + 26 + y = 2.055(10). It seems highly likely 
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that 01 + Zg + y = 2 holds at all the non-physical singularities. This would mean that 
the exponent corresponding to y at U = U* = Ai for the spin-; king model would be $ 
exactly. For the spin-1 king model the situation is less clear. At U = U&, the analogue 
of 01 is 1.172, and the analogue of y is 1.175. It is possible that they are both exactly, 
or that one is 1 and the other is 2. We have not been able to make these results more 
precise. 

As mentioned above, ratio methods are of use only if one can find a transformation 
that maps the non-physical singularity outside the transformed physical disc. One such 
transformation is given by U = x / ( 2  - x ) ,  which leads to a new (high-temperature- 
like) expansion variable, x = 1 - tanh(PJ/2). Among the various extrapolation methods 
(Guttmann 1989) we find that the best overall convergence is obtained from the N e v i l b  
Aitkin table. From the magnetization and susceptibility series we obtain the estimates 
l/xc = 1.4024(3), p = 0.12(1) and y = 1.75(1), The exponent estimates are from biased 
approximants using the accurate value xc = 0.71305(1) obtained from the differential 
approximant analysis. While this type of analysis yields estimates of lesser accuracy than 
the analysis based on differential approximants it is nevertheless reassuring that the two 
methods are in  agreement. Other extrapolation methods generally yield similar though 
less accurate estimates. The major source of error in all the methods is the presence of 
long-period oscillations in the exhapolations. 

4.2. The critical amplitudes 

We have calculated the criticaI amplitudes using two different methods, both of which are 
very simple and easy to implement. In the first method, we note that if f - A(l- u/uJ-*,  
then it follows that (U. - u)f'/*l.=., - A'/*u,. So we simply form the series for 
g ( u )  = (U, - u )  f I/* and evaluate Pad6 approximants to this series at uc. The result is 
just A'/*uu,. This procedure work well for the magnetization and susceptibility series 
(it obviously cannot be used to analyse the specific-heat series). For the magnetization 
we find that the spread of various approximants is minimal at uE = 0.554063 where 
A M  = 1.208496(4). Allowing for a value of uc between 0.55406 and 0.55407 we find 
AM = 1.2084(2). A similar analysis for the susceptibility yields the closest agreement at 
uc = 0.554065 with A, = 0.061 64(1). Again allowing for a wider choice in U, we find 
A, = 0.0616(2). 

In the second method, proposed by Liu and Fisher (1989), one starts from f (U) - 
A(u)(l - u/uc)-* + B ( u )  and then forms the auxiliary function g(u) = (1 - u / u , ) ~ ~ ( u )  - 
A(u) + B(u)(l - u/uJ* .  Thus the required amplitude is now the background term in 
g(u) ,  which can be obtained from inhomogeneous differential approximants (Guttmann 
1989, p89). In table 5 we have listed the estimates obtained by averaging over various 
first-order differential approximants using at least 65 terms of the series with uc = 
0.554065. The results for the magnetization AM = 1.2090(20) and the susceptibility 
A ,  = 0.0625(10) agree with those obtained above, though the error estimates are much 
larger. These results are not seriously affected by allowing for a wider choice of ut.  
This method can also be used to study the specific-heat series. One now starts from 
f ( u )  - A(u)ln(l - u/uc)  + B(u)  and then looks at the auxiliary function g(u)  = 
f(u)/ln(l  - u/u,). As before the amplitude can be obtained as the background term 
in g(u).  The results of the analysis are listed in table 5 from which we get the final estimate 

Judging from the error estimates it would seem that the first method for calculating the 
amplitudes is superior to the second. This apparent superiority, however, does not hold 

Ac = 19.75(50). 



6998 I G Enting et a1 

Table 5. Estimates for the critical amplifudes of the magnetiwtion AH.  the susceptibility A, 
and the specific heat A, as obtained fmm inhomogeneous lint-order differential approximu, 
L is the order of the inhomogeneous polynomial. 

4 
5 
6 
7 
8 
9 
IO 
I 1  
12 
13 
14 
15 
16 

1.2088(18) 
l.U)95(26) 
12090( 13) 
1.2092(12) 
1.2090(31) 
1.2093(15) 
I.Z09l(S) ~ 

1.2089(9) 
l,2O91( 13) 
1.209 1 6 )  
1.2089(5) 
I.2090(4) 
l.2089( IS) 

0.064668) 
0.0617(30) 
0.0629(26) 
0.0617(20) 
0.0598(46) 
0.0599(42) 
0.0628(15) 
0.0627( 14) 
0.0626(9) 
0.0626(12) 
0.0627(11) 
0.0625(8) 
0.0632(22) 

18.98(33) 
19.86(69) 
20.25(61) 
19.95(55) 
19.98(65) 
19.80f33) 

19.54(29) 
19.50(44) 
19.56(40) 
19.54(40) 
19.42(44) 

up under further scrutiny. We checked the two methods on the spin-f susceptibility series 
where the leading amplitude has been calculated to high accuracy (Wu et al 1976). In 
the widely accepted standard notation (Fisher 19671, Tx = Col1 - T/Tl-"4, one has, to 
10 decimal places, CO = 0.025536971 9 . .  . . In our analysis we assumed a singularity, 
~ ( u )  - A,I1 - With U = exp(-2pJ) it follows that CO = 4 u ~ ( - I n ~ , ) - ~ / ~ A , ,  
where the factor U: arises because we analyse the series for x(u)/u4, the factor (-In u , ) - ~ / ~  
is caused by the change of variable and the factor 4 is a matter of definition. Since, 
U, = 4 - 1 ,  we find that A, = 0.584 850 251 , . . . Using the two methods to calculate 
A, we get the estimates A, = 0.58488(1) from the first method and A, = 0.58490(5) 
from the second method. This clearly shows that the smaller error estimate from the first 
method cannot be taken too seriously as both estimates are only marginally consistent with 
the exact result. 

We thus conclude that AM = 1.208(4), A, = 0.0615(2) and A, = 19.8(1.0). 
Note that these amplitudes are obtained by analysing the series for M(u), ~ - ' u - ~ x ( u ) ,  
and (pJ)-2u-4C,(u), respectively, assuming in each case a singularity m 11 - u/uclA. 
Changing to the standard notation (Fisher 1967) and getting rid of the various prefactors 
we find the amplitude of M ( T )  is B = ( - InuC)'(*AM = 1.131(4), the amplitude of 
Tx(T) is C- = ( - I n ~ , ) - ~ / ~ u f A ,  = 0.0146(5) and finally the amplitude of C,(T) is 
A- = (- Inu,)2u~A, = 0.65(3). From this we find the Watson invariant (Watson 1969) 

A-B-'C- = 0.0074(6) 

which should be independent of the choice of lattice. 

4.3. The confluent exponent 

We have studied the series using three different methods in order to estimate the value of 
the confluent exponent. In the first method, due to Baker and Hunter (1973), one transforms 
the function F, 

(4.4) 
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We first make the substitution into an auxiliary function with simple poles at I / &  
U = u,(l -e-<) and find 

By multiplying the coefficient of ck by k! we get the required auxiliary function 

which has poles at = l /h i .  with residues at the poles of -A,/h,. In table 6 we 
have listed the estimates for the leading critical exponent B and the confluent exponent 
41 and their corresponding amplitudes as obtained from an analysis of the Baker-Hunter 
transformed spontaneous magnetization series with uc = 0.554065. Only the [ N J N  + 11 
approximants yield useful information. The [ N  + 1/N] approximants does not even find 
a pole close to -8 = -l/j3, whereas some of the [ N J N ]  approximants find a pole at 
-8.4(2) but no corresponding estimate for the confluent exponent. The results of the 
[ N / N  + 11 approximants certainly confirm that the leading critical exponent is i, and the 
corresponding estimates of the critical amplitudes AM are also in excellent agreement with 
the results obtained in the previous section. The estimates for 41 are less stable, but the 
approximants with N 2 34 are consistent with an estimate 41 = 1.06(2). These conclusions 
are unaltered by looking at uc = 0.554060 and 0.554070, although we note that by far 
the best agreement between different approximants is for U, = 0.554065. The results for 
the susceptibility series are listed in table 7 for U, = 0.554065. In this case we again 
confirm the values of the leading critical exponent and critical amplitudes. The results for 
the confluent singularity is much more confusing as the [ N / N  + I ]  approximants yields the 
estimate 41 = 1.155(5), very different from the estimate AI = 1.4(1) obtained from the 
[ N +  I J N ]  approximants. The [NJN] approximants generally yield no estimates for this 
value of uc. However, at slightly higher values of uc, the [ N J N ]  approximants also become 
useful, though they favour neither one nor the other of the 41-estimates cited above. This 
is clearly seen in figure 3 where we have plotted the estimate for 41 versus the parameter 
U, used in the Baker-Hunter transformation for various approximants with N 2 36. The 
different approximants [ N J N  + 11, [NJN], and [ N  + l / N ]  clearly bunch together in three 
distinct classes. The [ N J N  + 11 approximants exhibit a narrow crossing at 41 = 1.13(2) 

Table 6. Estimates for the leading critical exponent ,8 and the confluent exponent At plus the 
associated amplitudes from [NIN + I] Pad6 approximants 10 the Baker-Hunter transformed 
series for the magnetization with uc = 0.554065. 

N B  A M  AI  A M a M . 1  

30 0.12480 1.2070 1.147 -0.375 
31 0,12474 1.2066 1.180 -0.424 
32 0.12452 1.2052 - - 
33 0.124886 1.2074 1.120 -0.343 
34 0.12496 1.2080 1.072 -0.297 
35 0,12495 1.2080 1.076 -0.300 
36 0,12500 1.2084 1.050 -0.280 
37 0.12500 1.2084 1.050 -0,280 
38 0.12498 1.2083 1.058 -0.286 
39 0,12498 1.2082 1.063 -0.290 
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’Table 7. Estimates for the leading critical exponent y m d  the confluent exponent A ,  plus lhe 
associated amplitudes from [ N I N  t I] and [ N  t 1 / N ]  Pad6 appmximmts to the Baker-Hunter 
transformed series for the susceptibility with uc = 0.554065. 

I N I N  t 11 [ N  t V N I  

N Y  A X  A I  ax ax,^ Y Ax A I  AXox, i  

28 1.7407 0.06475 1.235 0.5851 1.7372 0.06605 - - 
29 1.7564 0.05991 1.110 0.4221 1.7481 0.06265 1.338 1.5032 
30 1.7529 0.06092 1.129 0.4429 1.7461 0.06324 1.369 1.8334 
31 1.7429 0.06411 1.233 0.5908 1.7405 0.06502 - - 
32 1.7494 0.06201 1.155 0.4733 1.7443 0.06379 1.406 2.3719 
33 1.7492 0.06206 1.156 0.4750 1.7441 0.06387 1.413 2.4897 
34 1.7498 0.06187 1.151 0.4686 1.7448 0.06363 1.394 2.1671 
35 1.7498 0.06187 1.151 0.4684 1.7448 0.06362 1.393 2,1561 
36 1.7494 0.06199 1.155 0.4727 1.7448 0.06362 1.394 2,1575 
37 1.7490 0,06210 1.158 0.4773 1.7448 0.06362 1.394 2,1633 

4 

1 .I 

1.5 

1.3 

1.1 

0.9 

0.7 a F i r e s .  Estimates forthe confluent exponent 
0.5536 0.5538 0.554 0.5542 0.5544 0.5546 A versus the parameter uc of the Baker- 

Hunter hmsfomation. All Pa& approximmts 
with 36 C N Q 39 are shown, U 

and uc = 0.554 lO(5). whereas the [ N  + 1/N] approximants cross at A I  = 1.40(5) and 
U, = 0.55406(2) and the [N,”] approximants, though not intersecting mutually, do seem 
to cross through both the above regions. Note that the [ N / N ]  approximant does not yield 
any estimates below uc rr 0.55406(2). From these results it is not possible to infer a final 
estimate for A1 and we are unable to explain the very different behaviour exhibited by the 
various sets of approximants. 

The second method, due to Adler et al (1981), involves studying Dlog Pad6 
approximants to the function G(u), where 

G(u) = AF(u)  + (uC - u)dF(u)/dU. 

The logarithmic derivative to G(u) has a pole at uc with residue A + A I ,  where A is the 
leading critical exponent. We evaluate the Dlog Pad6 approximants for a range of guesses 
for uc and A. For each such guess we thus find an estimate for AI; for the correct value of 
uc and A we should see a convergence region in the (ut, A -  AI)-space. In practice we always 
froze A at its expected exact value and plotted AI  as a function of U,. Figure 4 shows AI as 
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Figure 5. Same as in figure 4, but for the 
susceptibility series. 

a function of U, with @ = using the spontaneous magnetization series. In this figure we 
see a very narrow convergence region at uc = 0.544066(1) and A, = 1.06(2). In figure 5 
we have plotted similar results from an analysis of the susceptibility series with y = $. In 
this case we find a narrow crossing region at uC = 0.5540695(15) and A ,  = 1.15(2). 

The last method, also due to Adler et a1 (1983), is a generalization of an approach 
devised by Roskies (1981) to study the high-temperature susceptibility of the three- 
dimensional spin-f Ising model. The first step is to transform the series F ( u )  to ones 
in 

A y = 1 - (1 - u/u,) 
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11 Figure 7. Same as in hgure 6, but for the 
susceptibility series. 

where uc is assumed known but A is a variable parameter. Next one looks at different Pad6 
approximants to the function 

d GA = A(y - 1)- In F ( y ,  A) - h + 0[(1 - y)A'/AI. 
dY 

For the correct guesses for uE and A I  the various Pad6 approximants should intersect 
and give a correct estimate for the leading critical exponent A. In figure 6 we have plotted 
the estimate for j3 as a function of the transformation variable A with uc = 0.554 065 using 
the spontaneous magnetization series. A narrow crossing region is found at A I  = 1.11(1) 
and j3 = 0.12490(5). Flgure 7 shows a similar plot but for the susceptibility series; in this 
case we locate the crossing at A1 = 1.16(1) and y = 1.749(1). 

The value of the correction-to-scaling exponent of two-dimensional king systems has 
been addressed by several authors. Nienhuis (1982) has mapped the q-state Potts model in 
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two dimensions onto a model which is in the king universality class (when q is set to 2). In 
that case one obtains a value AI = $. Barma and Fisher (1985) obtained AI = 1.35f-0.25 
at the pure king critical point of the Klauder and double Gaussian models. They point out 
that while this is inconsistent with the expectation of pure logarithmic corrections to scaling, 
it is possible for these logarithmic terms to have amplitudes that vanish on approach to the 
pure king limit in such a way as to be describable by an apparent correction-to-scaling 
exponent A1 = ;. 

The various estimates we have obtained for the spin-1 model appear to be entirely 
consistent wiih this complex and subtle behaviour. 

5. Summary and discussion 

In this work we have extended substantially the existing low-temperature series for the two- 
dimensional spin-1 king model by introducing a new version of the finite-lattice method 
which saves considerable space over previous implementations. The usefulness of such 
extended series is demonstrated by our analysis, in which we find that the correct results 
are clearly evident only after more than 60 terms in the series! 

The analysis of the new spin-I series provides us with an accurate estimate of the 
critical point, U, = 0.554 065(5), where the error estimate is chosen rather conservatively, 
and reflects the descripancy between estimates obtained from the three series and using 
different methods of analysis. Our value is in excellent agreement with a recent estimate 
uc E 0.554066 obtained by Lipowski and Suzuki (1992) from a transfer-matrix version 
of the double cluster mean-field approximation, and also agrees with the estimate uc = 
0.554 071(3) of Bldte and Nightingale (198.5) obtained by phenomenological renormalization 
using the correlation length of a n x 03 systems calculated with transfer-matrix techniques. 
However, our results and those mentioned above, clearly rule out a recent conjecture 
uc = 0.553 887..  . by Urumov (1988) for the exact value of the critical point obtained 
from a generalization of a method proposed by $vrakiC (1980) to calculate the exactly 
known equations for the critical temperature of the spin-4 king model on a chequerboard 
lattice. 

The evidence for the leading critical exponents clearly show that the spin-I king model 
belongs to the usual king universality class, a point also supported strongly by the results of 
Blote and Nightingale (1985), i.e. the critical exponents take the values p = i, y = a,  and 
01 = 0, exactly. In addition we find a non-analytic confluent correction with an exponent 
AI > 1. Generally the magnetization series favours a value of - 1.05, whereas the 
susceptibility series yields estimates - 1.15. One notable exception is the [N + l / N ]  
approximants to the Baker-Hunter-transformed susceptibility series which leads to estimates - 1.4. From field-theoretic arguments it is expected that the value of A1 should be the 
same for both series. This leads us to the final estimate AI = l . l ( l ) ,  in good agreement 
with the result 1 c A, < 1.3 of Adler and Enting (1984), but clearly smaller than the 
field-theoretic prediction AI = 1.4 (Le Guillou and Zinn-Justin 1980). and the 'exact' value 
AI = $ found by Nienhuis (1982). 

The new finite-lattice method is also directly generalizable to higher-spin Ising models, 
as well as to other two-dimensional systems. The extended series for the low-temperature 
susceptibility of the quadratic spin-; king model is in excellent agreement with the 
numerical predictions of Gartenhaus and McCullough (1988). Our exact coefficients agree 
to all seven predicted significant digits. 
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Appendix. First correction term 

In section 2 we described how to obtain series expansions from the finite-lattice method. 
We ran the program up to b,, = 8, yielding a series correct through order u7*, When 
running the program one may actually calculate the truncated series in U to orders beyond 
that to which the series coefficients are correct. One would expect at least the first incorrect 
coefficient derived in this fashion to deviate only a little from the correct one. In this 
appendix we describe a correction procedure whereby we were able to obtain one additional 
correct term and thus extend the series to order u ' ~ .  At first we just looked at the first 
correction term for b,, = 2-7, i.e. the difference between the correct series coefficients 
and the first incorrect ones for a given value of b,,, but were unable to find a pattern 
allowing us to 'guess' the correction term for b,, = 8. Next we re-ran the program 
deriving a series using q = 2 hoping that the correction terms for the q = 2 case were the 
same as those for the spin-1 model (q = 3). It turns out that the correction terms is the 
two cases are almost identical. In table A1 we have listed the amount by which the q = 2 
correction terms fail to predict the spin-1 correction terms. One could thus obtain almost 
correct spin-I correction terms forb,, = 8 using just the q = 2 correction term. However, 
we found that the numbers in table AI  obey recursive relations. Let A: = 6,b/b,; then 
we find the following recurrence relations for the A's, in the case of the partition function: 

A T  - 2 A g 1  + A i o  = -9 

the magnetization 
A Z 3  - 3Aht2 + 3 A Z 1  - A h  = 81 (A.]) 

64.2) 
Using these recurrence relations we find At and thus using the q = 2 correction terms 

for b,, = 8 we can finally find the correction terms for the spin-1 model and thus the 
correct coefficient to u7'. 

Though the correction procedure is rather cumbersome it should be noted that the CPU 
time required to calculate the truncated series with b,, = 2-7 for q = 3 and b,, = 2-9 

and the susceptibility 
Ab+4 X - 4 A y  + 6Ahxf2 - 4 A F 1  + A! = -972. 

Table Al .  The difference between the first correction terms with q = 2 and 3 for the partition 
function (azo), magnetization (6~). and susceptibility (&). 

bm, Sz. SM 8 ,  

2 -20 180 -1620 
3 -84 1008 -12096 
4 -720 3300 -49500 
5 -455 8190 -147420 
6 -816 17136 -359856 
7 -1330 31920 -766080 
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for q = 2 is insignificant compared to the time it takes to run the program with b,, = 8 
and q = 3. 
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